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1. Introduction: 
 
The domain of application of our project is STOCK MARKET PRICE 
PREDICTION. The STOCK MARKET allows us to buy and sell units of 
ownerships in a company, which we call STOCKS. If  the company profits go up, 
we own some of those profits. If they go down, we lose profits with them.  
STOCK market price prediction is a very complex and challenging research area 
where different methods have been developed to predict stock price movement in 
the market. 
 
So, if we were to buy stocks in the right company and at the right time, we could 
become rich overnight. Is there something we could do to predict future stock 
prices, given a data set of past prices? 
 
 
 
    
 
 
 
 
 
This sounds like a Data Science problem. But according to the “Efficient Market 

Hypothesis”, the Stock Market is random and unpredictable. But major financial 
firms like J.P. Morgan, Goldman Sachs, Citi Group have been hiring Quantitative 
Traders for years to build Predictive Models on Past Market Data. 
Let’s think about the process of creating investment strategy: once we’ve decided 
that we do want to make an investment, we need to figure out which companies out 
there are most likely going to give us big returns. Generally, we start by doing 
some research on the company’s history, use the past news articles and how the 
company has fared over the years. We would look how stock prices have changed 
over time, may observe what others are saying about the future of the company on 
Twitter, and finally, we would collect all of these data that we’ve gathered in our 
head, to make a prediction about our future price. 
 
That’s the prefect use case for Machine Learning, learning from past data points, to 
predict future ones. In a very recent paper from “Auburn”, on this topic, a small 
group concluded that using data from several sources like Google Trends, 

Wikipedia and Google Correlate,  resulted in a model capable of assisting in 

         Data + ???? = Predictions 

     Machine Learning 
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investment decisions and have a relatively high accuracy(more than 85% accuracy) 
from movement predictions. So, we know, academics are researching this, and, we 
also know that big banks are definitely doing this. 
 
When it comes to the type of models, we could use, we’ve a huge assortment to try 
from. Pending results from papers is a good start to see what has been tried before 
and it’s not just about using Pattern Recognition algorithms. 
 
Records for prices for traded commodities  goes back to thousands of years. In 
Finance, the field of Quantitative Analysis is about 25 years old. But even now 
it’s still not fully accepted, understood or widely used. It’s a study of how certain 
variables correlate with stock price behaviour. One of the first attempt at this was 
made in the Seventies by two British statisticians Box and Jenkins using 

Mainframe computers. The only historical data they had access to were prices 
and volumes. They called their model  “Arima”. At that time, it was and 
expensive to run. But, by the Eighties, things started to get interesting. Spread-
sheets were invented so that firms could model companies’ financial performance, 
and thus automated data collection became a reality and with improvement in 
computing power, models could analyze data much faster. It was like a renaissance 
on the Financial market.  
 
In the past few years, we’ve seen a lot of academic papers published using neural 
networks, to predict stock prices, with varying degrees of success. But until 
recently, the ability to build these models has been restricted to academics who 
spend their days writing very complex codes.  
  
 
But  now with libraries like TensorFlow and Keras, anyone can build powerful 
predictive models, trained on massive datasets. 
 
 
The Kalman filter was a significant breakthrough in the area of linear filtering and 
prediction. It has been used in the processing of signals imbedded in noise for over 
twenty five years. A major application of Kalman filtering is the solution of 
navigational problems where information is received from multiple noisy sources. 
The Kalman filter has also been used for applications outside the area of 
navigation. C. R. Szelag published an article in the Bell System Technical Journal 
using a Kalman filter to forecast telephone loading. The Kalman filter has even 
made its way into the economic literature. 



 
Theory of Estimation 
            using  
Artificial Intelligence     Mr. Jaydip Mukhopadhyay Grp. No.:-7 

8  

 

 
            The Kalman filter has been used to forecast economic quantities such 
as sales and inventories. This project examines the use of the Kalman filter to 
forecast intraday stock and commodity prices. The price forecasts are based on a 
market's price history with no external information included. For the Kalman filter 
to produce beneficial forecasts, the market must not be a random walk process, but 
must exhibit a statistically significant autocorrelation pattern which can be 
modeled.  
 
   Once an appropriate Kalman filter model is determined, strategies for 
increasing profits can be studied. This dissertation presents the analysis techniques 
used to detect autocorrelation in a market and the models used to describe the 
correlation. Several stock indexes and commodity markets are tested for 
autocorrelation. The Kalman filter algorithm and an adaptive Kalman filter 
algorithm are also presented and then are used to forecast prices for the Dow Jones 
Transportation index. Several buy and sell strategies are used to investigate the use 
of the Kalman filter forecasts to benefit market traders. 
 
Amazon and Microsoft control the cloud market [through which AI is going to be 
delivered], but they don’t have frameworks like Tensorflow [Google] or 
Caffe/Torch [Facebook] to give them a strong leg up. 

Amazon and Facebook have the key channels through which AI is mostly accessed 
by public [Alexa or Facebook messenger]. 

Amazon and Google have the best speech APIs and NLP. 

Microsoft and Amazon provide the best computer vision APIs. 

Microsoft and IBM have the best sales teams in this space and work with the 
widest range of partners to build the AI ecosystem. 

Microsoft and Google provide ways to train models through services without 
worrying about the underlying ML frameworks. 

Facebook provides support to the widest range of opensource AI projects, but don’t 
play the services game. Thus, they might not dominate the AI market. 

IBM Watson is the oldest and perhaps the most complete of AI tools/services, but 
don’t engage well with small developers and thus their applications are limited. 
Their focus is mostly on enterprise. 
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Google’s enterprise sales is weak, but it has perhaps the best of AI technology 
available both inside and outside. The question is just how well can they interact 
with the ecosystem and help build mission critical applications. 

Apple has a good AI team inside but unlike other companies they don’t publish a 
lot or talk outside their company. No one knows what they do and from what is 
available public they are perhaps the weakest of the majors in this segment. Not 
surprisingly Siri has lost out to its competitors in terms of usefulness. 

In short, it is a game where no one company really dominates. But, Google perhaps 
has a slight leg up over the others if everything is taken into consideration. 

 

 
 
 
 
The approach of our project is unique in the sense that it is aimed at getting better 
estimation through two successive stages of filtering, namely, 

  
(i) A  Machine Learning (an AI sub-domain) Classifier, which is a new-

age efficient estimation technology. 
 

(ii) Kalman Filtering, which is a vintage efficient estimation technology. 

 
 
  
  



 
Theory of Estimation 
            using  
Artificial Intelligence     Mr. Jaydip Mukhopadhyay Grp. No.:-7 

10  

 

2. Review  of  Literature: 

 

 Artificial Intelligence: 
 

 Artificial intelligence (AI, also machine 
intelligence, MI) is Intelligence displayed by machines, in contrast with the natural 
intelligence (NI) displayed by humans and other animals. In computer science AI 
research is defined as the study of "intelligent agents": any device that perceives its 
environment and takes actions that maximize its chance of success at some goal. 

Colloquially, the term "artificial intelligence" is applied when a machine mimics 
"cognitive" functions that humans associate with other human minds, such as 
"learning" and "problem solving". 
 

 While thought-capable artificial beings appeared as storytelling devices in 
antiquity,  the idea of actually trying to build a machine to perform useful 
reasoning may have begun with Ramon Llull (c. 1300 CE). With his Calculus 
ratiocinator, Gottfried Leibniz extended the concept of the calculating 
machine (Wilhelm Schickard engineered the first one around 1623), intending to 
perform operations on concepts rather than numbers.  Since the 19th century, 
artificial beings are common in fiction, as in  Frankenstein or Karel Čapek's R.U.R. 
(Rossum's Universal Robots). 

 

 Machine Learning: 

Machine learning is a field of computer science that gives computers the ability to 
learn without being explicitly programmed.  

 

  Arthur Samuel, an American pioneer in the field of computer 
gaming and artificial intelligence, coined the term "Machine Learning" in 1959 
while at IBM. Evolved from the study of pattern recognition and computational 
learning theory in artificial intelligence, machine learning explores the study and 
construction of algorithms that can learn from and make predictions on data – such 
algorithms overcome following strictly static program instructions by making data-
driven predictions or decisions,  through building a model from sample inputs. 
Machine learning is employed in a range of computing tasks where designing and 
programming explicit algorithms with good performance is difficult or infeasible; 
example applications include email filtering, detection of network intruders or 

https://en.wikipedia.org/wiki/Intelligence
https://en.wikipedia.org/wiki/Machine
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Intelligent_agent
https://en.wikipedia.org/wiki/Human_mind
https://en.wikipedia.org/wiki/Artificial_being
https://en.wikipedia.org/wiki/Storytelling_device
https://en.wikipedia.org/wiki/Ramon_Llull
https://en.wikipedia.org/wiki/Calculus_ratiocinator
https://en.wikipedia.org/wiki/Calculus_ratiocinator
https://en.wikipedia.org/wiki/Gottfried_Leibniz
https://en.wikipedia.org/wiki/Calculating_machine
https://en.wikipedia.org/wiki/Calculating_machine
https://en.wikipedia.org/wiki/Wilhelm_Schickard
https://en.wikipedia.org/wiki/Frankenstein
https://en.wikipedia.org/wiki/Karel_%C4%8Capek
https://en.wikipedia.org/wiki/R.U.R._(Rossum%27s_Universal_Robots)
https://en.wikipedia.org/wiki/R.U.R._(Rossum%27s_Universal_Robots)
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Arthur_Samuel
https://en.wikipedia.org/wiki/Computer_Gaming
https://en.wikipedia.org/wiki/Computer_Gaming
https://en.wikipedia.org/wiki/IBM
https://en.wikipedia.org/wiki/Pattern_recognition
https://en.wikipedia.org/wiki/Computational_learning_theory
https://en.wikipedia.org/wiki/Computational_learning_theory
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Data
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Mathematical_model
https://en.wikipedia.org/wiki/Email_filtering
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malicious insiders working towards a data breach, optical character 
recognition (OCR),  learning to rank, and computer vision. 

 

As a scientific endeavour, machine learning grew out of the quest for artificial 
intelligence. Already in the early days of AI as an academic discipline, some 
researchers were interested in having machines learn from data. They attempted to 
approach the problem with various symbolic methods, as well as what were then 
termed "neural networks"; these were mostly perceptrons and other models that 
were later found to be reinventions of the generalized linear models of 
statistics. Probabilistic reasoning was also employed, especially in automated 
medical diagnosis.  

However, an increasing emphasis on the logical, knowledge-based 
approach caused a rift between AI and machine learning. Probabilistic systems 
were plagued by theoretical and practical problems of data acquisition and 
representation. By 1980, expert systems had come to dominate AI, and statistics 
was out of favor. Work on symbolic/knowledge-based learning did continue within 
AI, leading to inductive logic programming, but the more statistical line of 
research was now outside the field of AI proper, in pattern recognition 
and information retrieval. Neural networks research had been abandoned by AI and 
computer science around the same time. This line, too, was continued outside the 
AI/CS field, as "connectionism", by researchers from other disciplines 
including Hopfield, Rumel hart and Hinton. Their main success came in the mid-
1980s with the reinvention of back propagation. 

 

https://en.wikipedia.org/wiki/Data_breach
https://en.wikipedia.org/wiki/Optical_character_recognition
https://en.wikipedia.org/wiki/Optical_character_recognition
https://en.wikipedia.org/wiki/Learning_to_rank
https://en.wikipedia.org/wiki/Computer_vision
https://en.wikipedia.org/wiki/Neural_network
https://en.wikipedia.org/wiki/Perceptron
https://en.wikipedia.org/wiki/ADALINE
https://en.wikipedia.org/wiki/Generalized_linear_model
https://en.wikipedia.org/wiki/Probability_theory
https://en.wikipedia.org/wiki/GOFAI
https://en.wikipedia.org/wiki/GOFAI
https://en.wikipedia.org/wiki/Expert_system
https://en.wikipedia.org/wiki/Inductive_logic_programming
https://en.wikipedia.org/wiki/Pattern_recognition
https://en.wikipedia.org/wiki/Information_retrieval
https://en.wikipedia.org/wiki/Connectionism
https://en.wikipedia.org/wiki/John_Hopfield
https://en.wikipedia.org/wiki/David_Rumelhart
https://en.wikipedia.org/wiki/Geoff_Hinton
https://en.wikipedia.org/wiki/Backpropagation
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   Fig. Machine Learning Ontology 

 

 

 

 
 

   Fig. Diagram combining two classes 
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 Machine Learning Classifiers: 

 Decision Tree Algorithm: 

A tree has many analogies in real life, and turns out that it has 
influenced a wide area of machine learning, covering 
both classification and regression. In decision analysis, a decision 
tree can be used to visually and explicitly represent decisions and 
decision making. As the name goes, it uses a tree-like model of 
decisions. Though a commonly used tool in data mining for deriving a 
strategy to reach a particular goal, its also widely used in machine 
learning. 

How can an algorithm be represented as a tree? 

For this let’s consider a very basic example that uses titanic data set for 
predicting whether a passenger will survive or not. Below model uses 3 
features/attributes/columns from the data set, namely sex, age and sibsp 
(number of spouses or children along). 

 
Image taken from Wikipedia 
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A decision tree is drawn upside down with its root at the top. In the image on the 
left, the bold text in black represents a condition/internal node, based on which the 
tree splits into branches/ edges. The end of the branch that doesn’t split anymore is 
the decision/leaf, in this case, whether the passenger died or survived, represented 
as red and green text respectively. 

Although, a real dataset will have a lot more features and this will just be a branch 
in a much bigger tree, but you can’t ignore the simplicity of this algorithm. 
The feature importance is clear and relations can be viewed easily. This 
methodology is more commonly known as learning decision tree from data and 
above tree is called Classification tree as the target is to classify passenger as 
survived or died. Regression trees are represented in the same manner, just they 
predict continuous values like price of a house. In general, Decision Tree 
algorithms are referred to as CART or Classification and Regression Trees. 

So, what is actually going on in the background? Growing a tree involves 

deciding on which features to choose and what conditions to use for splitting, 

along with knowing when to stop. As a tree generally grows arbitrarily, you 
will need to trim it down for it to look beautiful. Lets start with a common 

technique used for splitting. 

Recursive Binary Splitting 

 

In this procedure all the features are considered and different split points are tried 
and tested using a cost function. The split with the best cost (or lowest cost) is 
selected. 
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Consider the earlier example of tree learned from titanic dataset. In the first split or 
the root, all attributes/features are considered and the training data is divided into 
groups based on this split. We have 3 features, so will have 3 candidate splits. Now 
we will calculate how much accuracy each split will cost us, using a function. The 
split that costs least is chosen, which in our example is sex of the passenger. 
This algorithm is recursive in nature as the groups formed can be sub-divided using 
same strategy. Due to this procedure, this algorithm is also known as the greedy 
algorithm, as we have an excessive desire of lowering the cost. This makes the root 
node as best predictor/classifier. 

Cost of a split 

Lets take a closer look at cost functions used for classification and regression. In 
both cases the cost functions try to find most homogeneous branches, or branches 
having groups with similar responses. This makes sense we can be more sure that a 
test data input will follow a certain path. 
Regression : sum(y — prediction)² 

Lets say, we are predicting the price of houses. Now the decision tree will start 
splitting by considering each feature in training data. The mean of responses of the 
training data inputs of particular group is considered as prediction for that group. 
The above function is applied to all data points and cost is calculated for all 
candidate splits. Again the split with lowest cost is chosen. Another cost function 
involves reduction of standard deviation, more about it can be found here. 
Classification : G = sum(pk * (1 — pk)) 

A Gini score gives an idea of how good a split is by how mixed the response classes 
are in the groups created by the split. Here, pk is proportion of same class inputs 
present in a particular group. A perfect class purity occurs when a group contains 
all inputs from the same class, in which case pk is either 1 or 0 and G = 0, where as 
a node having a 50–50 split of classes in a group has the worst purity, so for a 
binary classification it will have pk = 0.5 and G = 0.5. 

When to stop splitting? 

https://medium.com/towards-data-science/balancing-bias-and-variance-to-control-errors-in-machine-learning-16ced95724db
http://www.saedsayad.com/decision_tree_reg.htm
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You might ask when to stop growing a tree? As a problem usually has a large set of 
features, it results in large number of split, which in turn gives a huge tree. Such 
trees are complex and can lead to overfitting. So, we need to know when to stop? 
One way of doing this is to set a minimum number of training inputs to use on each 
leaf. For example we can use a minimum of 10 passengers to reach a decision(died 
or survived), and ignore any leaf that takes less than 10 passengers. Another way is 
to set maximum depth of your model. Maximum depth refers to the the length of 
the longest path from a root to a leaf. 

Pruning 

The performance of a tree can be further increased by pruning. It involves removing 
the branches that make use of features having low importance. This way, we reduce 
the complexity of tree, and thus increasing its predictive power by reducing 
overfitting. 

Pruning can start at either root or the leaves. The simplest method of pruning starts 
at leaves and removes each node with most popular class in that leaf, this change is 
kept if it doesn't deteriorate accuracy. Its also called reduced error pruning. More 
sophisticated pruning methods can be used such as cost complexity pruning where a 
learning parameter (alpha) is used to weigh whether nodes can be removed based 
on the size of the sub-tree. This is also known as weakest link pruning. 

Advantages of CART 

 Simple to understand, interpret, visualize. 

 Decision trees implicitly perform variable screening or feature selection. 

 Can handle both numerical and categorical data. Can also handle multi-output 
problems. 

 Decision trees require relatively little effort from users for data preparation. 

 Nonlinear relationships between parameters do not affect tree performance. 

Disadvantages of CART 

 Decision-tree learners can create over-complex trees that do not generalize the 
data well. This is called overfitting. 

https://medium.com/towards-data-science/balancing-bias-and-variance-to-control-errors-in-machine-learning-16ced95724db
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 Decision trees can be unstable because small variations in the data might result 
in a completely different tree being generated. This is called variance, which 
needs to be lowered by methods like bagging and boosting. 

 Greedy algorithms cannot guarantee to return the globally optimal decision tree. 
This can be mitigated by training multiple trees, where the features and samples 
are randomly sampled with replacement. 

 Decision tree learners create biased trees if some classes dominate. It is 
therefore recommended to balance the data set prior to fitting with the decision 
tree. 

This is all the basic, to get you at par with decision tree learning. An 
improvement over decision tree learning is made using technique of boosting. A 
popular library for implementing these algorithms is Scikit-Learn. It has a 
wonderful api that can get your model up an running with just a few lines of 
code in python. 

 

 

 Random Forest Model: 
 
Random Forest is a flexible, easy to use machine learning algorithm that 
produces, even without hyper-parameter tuning, a great result most of the 
time. It is also one of the most used algorithms, because it’s simplicity and 
the fact that it can be used for both classification and regression tasks. In this 
post, you are going to learn, how the random forest algorithm works and 
several other important things about it. 
 
How it works: 

Random Forest is a supervised learning algorithm. Like you can 
already see from its name, it creates a forest and makes it somehow 
random. The “forest” it builds, is an ensemble of Decision Trees, most 
of the time trained with the “bagging” method. The general idea of the 
bagging method is that a combination of learning models increases the 
overall result. 
 
To say it in simple words: Random forest builds multiple decision trees and 
merges them together to get a more accurate and stable prediction. 

https://medium.com/towards-data-science/balancing-bias-and-variance-to-control-errors-in-machine-learning-16ced95724db
https://towardsdatascience.com/boosting-the-accuracy-of-your-machine-learning-models-f878d6a2d185
https://medium.com/towards-data-science/balancing-bias-and-variance-to-control-errors-in-machine-learning-16ced95724db
https://towardsdatascience.com/boosting-the-accuracy-of-your-machine-learning-models-f878d6a2d185
https://becominghuman.ai/implementing-decision-trees-using-scikit-learn-5057b27221ec
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One big advantage of random forest is, that it can be used for both 
classification and regression problems, which form the majority of current 
machine learning systems. I will talk about random forest in classification, 
since classification is sometimes considered the building block of machine 
learning. Below you can see how a random forest would look like with two 
trees: 

 
 

With a few exceptions a random-forest classifier has all the hyper-parameters 
of a decision-tree classifier and also all the hyper-parameters of a bagging 
classifier, to control the ensemble itself. Instead of building a bagging-
classifier and passing it into a decision-tree-classifier, you can just use the 
random-forest classifier class, which is more convenient and optimized for 
decision trees. Note that there is also a random-forest regressor for regression 
tasks. 
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The random-forest algorithm brings extra randomness into the model, when it 
is growing the trees. Instead of searching for the best feature while splitting a 
node, it searches for the best feature among a random subset of features. This 
process creates a wide diversity, which generally results in a better model. 

Therefore when you are growing a tree in random forest, only a random subset 
of the features is considered for splitting a node. You can even make trees 
more random, by using random thresholds on top of it, for each feature rather 
than searching for the best possible thresholds (like a normal decision tree 
does). 

 Deep Neural Network: 
 

Neural networks are a set of algorithms, modeled loosely after the human 
brain, that are designed to recognize patterns. They interpret sensory data 
through a kind of machine perception, labeling or clustering raw input. The 
patterns they recognize are numerical, contained in vectors, into which all 
real-world data, be it images, sound, text or time series, must be translated. 

Neural networks help us cluster and classify. You can think of them as a 
clustering and classification layer on top of the data you store and manage. 
They help to group unlabeled data according to similarities among the 
example inputs, and they classify data when they have a labeled dataset to 
train on. (Neural networks can also extract features that are fed to other 
algorithms for clustering and classification; so you can think of deep neural 
networks as components of larger machine-learning applications involving 
algorithms for reinforcement learning, classification and regression.) 

Classification 

All classification tasks depend upon labeled datasets; that is, humans must 
transfer their knowledge to the dataset in order for a neural to learn the 
correlation between labels and data. This is known as supervised learning. 

Detect faces, identify people in images, recognize facial expressions (angry, 
joyful) 

https://deeplearning4j.org/deepreinforcementlearning.html
https://deeplearning4j.org/logistic-regression.html
https://deeplearning4j.org/neuralnet-overview#classification
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Identify objects in images (stop signs, pedestrians, lane markers…) 

Recognize gestures in video 

Detect voices, identify speakers, transcribe speech to text, recognize 
sentiment in voices 

Classify text as spam (in emails), or fraudulent (in insurance claims); 
recognize sentiment in text (customer feedback) 

Any labels that humans can generate, any outcomes you care about and 
which correlate to data, can be used to train a neural network. 

Clustering 

Clustering or grouping is the detection of similarities. Deep learning does not 
require labels to detect similarities. Learning without labels is called unsupervised 
learning. Unlabeled data is the majority of data in the world. One law of machine 
learning is: the more data an algorithm can train on, the more accurate it will be. 
Therefore, unsupervised learning has the potential to produce highly accurate 
models. 

Search: Comparing documents, images or sounds to surface similar items. 

Anomaly detection: The flipside of detecting similarities is detecting 
anomalies, or unusual behavior. In many cases, unusual behavior correlates 
highly with things you want to detect and prevent, such as fraud. 

Predictive Analytics: Regressions 

With classification, deep learning is able to establish correlations between, 
say, pixels in an image and the name of a person. You might call this a static 
prediction. By the same token, exposed to enough of the right data, deep 
learning is able to establish correlations between present events and future 
events. It can run regression between the past and the future. The future 
event is like the label in a sense. Deep learning doesn’t necessarily care 
about time, or the fact that something hasn’t happened yet. Given a time 

https://deeplearning4j.org/neuralnet-overview#clustering
https://deeplearning4j.org/neuralnet-overview#predictive-analytics-regressions
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series, deep learning may read a string of number and predict the number 
most likely to occur next. 

 Hardware breakdowns (data centers, manufacturing, transport) 

Health breakdowns (strokes, heart attacks based on vital stats and data from 
wearables) 

Customer churn (predicting the likelihood that a customer will leave, based 
on web activity and metadata) 

Employee turnover (ditto, but for employees) 

The better we can predict, the better we can prevent and pre-empt. As you 
can see, with neural networks, we’re moving towards a world of fewer 
surprises. Not zero surprises, just marginally fewer. We’re also moving 
toward a world of smarter agents that combine neural networks with other 
algorithms like reinforcement learning to attain goals. 

With that brief overview of deep learning use cases, let’s look at what neural 
nets are made of. 

Neural Network Elements 

Deep learning is the name we use for “stacked neural networks”; that is, 
networks composed of several layers. 

The layers are made of nodes. A node is just a place where computation 
happens, loosely patterned on a neuron in the human brain, which fires when 
it encounters sufficient stimuli. A node combines input from the data with a 
set of coefficients, or weights, that either amplify or dampen that input, 
thereby assigning significance to inputs for the task the algorithm is trying to 
learn. (For example, which input is most helpful is classifying data without 
error?) These input-weight products are summed and the sum is passed 
through a node’s so-called activation function, to determine whether and to 
what extent that signal progresses further through the network to affect the 
ultimate outcome, say, an act of classification. 

https://deeplearning4j.org/deepreinforcementlearning
https://deeplearning4j.org/use_cases
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Here’s a diagram of what one node might look like. 

 

A node layer is a row of those neuronlike switches that turn on or off as the 
input is fed through the net. Each layer’s output is simultaneously the 
subsequent layer’s input, starting from an initial input layer receiving your 
data. 

 

Pairing adjustable weights with input features is how we assign significance to 
those features with regard to how the network classifies and clusters input. 
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Example: Feedforward Networks 

Our goal in using a neural net is to arrive at the point of least error as fast as 
possible. We are running a race, and the race is around a track, so we pass the same 
points repeatedly in a loop. The starting line for the race is the state in which our 
weights are initialized, and the finish line is the state of those parameters when 
they are capable of producing accurate classifications and predictions. 

The race itself involves many steps, and each of those steps resembles the steps 
before and after. Just like a runner, we will engage in a repetitive act over and over 
to arrive at the finish. Each step for a neural network involves a guess, an error 
measurement and a slight update in its weights, an incremental adjustment to the 
coefficients. 

A collection of weights, whether they are in their start or end state, is also called a 
model, because it is an attempt to model data’s relationship to ground-truth labels, 
to grasp the data’s structure. Models normally start out bad and end up less bad, 
changing over time as the neural network updates its parameters. 

This is because a neural network is born in ignorance. It does not know which 
weights and biases will translate the input best to make the correct guesses. It has 
to start out with a guess, and then try to make better guesses sequentially as it 
learns from its mistakes. (You can think of a neural network as a miniature 
enactment of the scientific method, testing hypotheses and trying again – only it is 
the scientific method with a blindfold on.) 

Here is a simple explanation of what happens during learning with a feedforward 
neural network, the simplest architecture to explain. 

Input enters the network. The coefficients, or weights, map that input to a set of 
guesses the network makes at the end. 

input * weight = guess 

Weighted input results in a guess about what that input is. The neural then takes its 
guess and compares it to a ground-truth about the data, effectively asking an expert 
“Did I get this right?” 

ground truth - guess = error 
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The difference between the network’s guess and the ground truth is its error. The 
network measures that error, and walks the error back over its model, adjusting 
weights to the extent that they contributed to the error. 

error * weight's contribution to error = adjustment 

The three pseudo-mathematical formulas above account for the three key functions 
of neural networks: scoring input, calculating loss and applying an update to the 
model – to begin the three-step process over again. A neural network is a 
corrective feedback loop, rewarding weights that support its correct guesses, and 
punishing weights that lead it to err. 

Let’s linger on the first step above. 

Multiple Linear Regression 

Despite their biologically inspired name, artificial neural networks are nothing 
more than math and code, like any other machine-learning algorithm. In fact, 
anyone who understands linear regression, one of first methods you learn in 
statistics, can understand how a neural net works. In its simplest form, linear 
regression is expressed as 

Y_hat = bX + a 

where Y_hat is the estimated output, X is the input, b is the slope and a is the 
intercept of a line on the vertical axis of a two-dimensional graph. (To make this 
more concrete: X could be radiation exposure and Y could be the cancer risk; X 
could be daily pushups and Y could be the total weight you can benchpress; X the 
amount of fertilizer and Y the size of the crop.) You can imagine that every time 
you add a unit to X, the dependent variable Y increases proportionally, no matter 
how far along you are on the X axis. That simple relation between two variables 
moving up or down together is a starting point. 

The next step is to imagine multiple linear regression, where you have many input 
variables producing an output variable. It’s typically expressed like this: 

Y_hat = b_1*X_1 + b_2*X_2 + b_3*X_3 + a 
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(To extend the crop example above, you might add the amount of sunlight and 
rainfall in a growing season to the fertilizer variable, with all three 
affecting Y_hat.) 

Now, that form of multiple linear regression is happening at every node of a neural 
network. For each node of a single layer, input from each node of the previous 
layer is recombined with input from every other node. That is, the inputs are mixed 
in different proportions, according to their coefficients, which are different leading 
into each node of the subsequent layer. In this way, a net tests which combination 
of input is significant as it tries to reduce error. 

Once you sum your node inputs to arrive at Y_hat, it’s passed through a non-linear 
function. Here’s why: If every node merely performed multiple linear 
regression, Y_hat would increase linearly and without limit as the X’s increase, but 
that doesn’t suit our purposes. 

What we are trying to build at each node is a switch (like a neuron…) that turns on 
and off, depending on whether or not it should let the signal of the input pass 
through to affect the ultimate decisions of the network. 

When you have a switch, you have a classification problem. Does the input’s 
signal indicate the node should classify it as enough, or not_enough, on or off? A 
binary decision can be expressed by 1 and 0, and logistic regression is a non-linear 
function that squashes input to translate it to a space between 0 and 1. 

The nonlinear transforms at each node are usually s-shaped functions similar to 
logistic regression. They go by the names of sigmoid (the Greek word for “S”), 
tanh, hard tanh, etc., and they shaping the output of each node. The output of all 
nodes, each squashed into an s-shaped space between 0 and 1, is then passed as 
input to the next layer in a feed forward neural network, and so on until the signal 
reaches the final layer of the net, where decisions are made. 

Gradient Descent 

The name for one commonly used optimization function that adjusts weights 
according to the error they caused is called “gradient descent.” 

Gradient is another word for slope, and slope, in its typical form on an x-y graph, 
represents how two variables relate to each other: rise over run, the change in 
money over the change in time, etc. In this particular case, the slope we care about 

https://deeplearning4j.org/neuralnet-overview#logistic
https://deeplearning4j.org/neuralnet-overview#gradient-descent
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describes the relationship between the network’s error and a single weight; i.e. that 
is, how does the error vary as the weight is adjusted. 

To put a finer point on it, which weight will produce the least error? Which one 
correctly represents the signals contained in the input data, and translates them to a 
correct classification? Which one can hear “nose” in an input image, and know that 
should be labeled as a face and not a frying pan? 

As a neural network learns, it slowly adjusts many weights so that they can map 
signal to meaning correctly. The relationship between network Error and each of 
those weights is a derivative, dE/dw, that measures the degree to which a slight 
change in a weight causes a slight change in the error. 

Each weight is just one factor in a deep network that involves many transforms; the 
signal of the weight passes through activations and sums over several layers, so we 
use the chain rule of calculus to march back through the networks activations and 
outputs and finally arrive at the weight in question, and its relationship to overall 
error. 

The chain rule in calculus states that 

 

In a feedforward network, the relationship between the net’s error and a single 
weight will look something like this: 

 

That is, given two variables, Error and weight, that are mediated by a third 
variable, activation, through which the weight is passed, you can calculate how a 
change in weight affects a change in Error by first calculating how a change 
in activation affects a change in Error, and how a change in weight affects a 
change in activation. 

The essence of learning in deep learning is nothing more than that: adjusting a 
model’s weights in response to the error it produces, until you can’t reduce the 
error any more. 

https://en.wikipedia.org/wiki/Chain_rule
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Updaters 

DL4J support the following Updaters 

 ADADELTA 
 ADAGRAD 
 ADAM 
 NESTEROVS 
 NONE 
 RMSPROP 
 SGD 
 CONJUGATE GRADIENT 
 HESSIAN FREE 
 LBFGS 
 LINE GRADIENT DESCENT 

The JavaDoc for updaters is part of the DeepLearning4J JavaDoc and is 
available here. 

Activation Functions 

The activation function determines what output a node will generate base upon its 
input. Sigmoid activation functions had been very populare, ReLU is currently 
very popular. In DeepLearnging4J the activation function is set at the layer level 
and applies to all neurons in that layer. 

Supported Activation functions 

 CUBE 
 ELU 
 HARDSIGMOID 
 HARDTANH 
 IDENTITY 
 LEAKYRELU 

https://deeplearning4j.org/doc/org/deeplearning4j/nn/conf/Updater.html
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 RATIONALTANH 
 RELU 
 RRELU 
 SIGMOID 
 SOFTMAX 
 SOFTPLUS 
 SOFTSIGN 
 TANH 

Configuring an activation function 

layer(2, new OutputLayer.Builder(LossFunctions.LossFunction.NEGATIVELOG
LIKELIHOOD).activation(Activation.SOFTMAX) 

Custom layers, activation functions and loss functions 

Deeplearning4j support custom Layers, activations and Loss Functions. 

Logistic Regression 

On a deep neural network of many layers, the final layer has a particular role. 
When dealing with labeled input, the output layer classifies each example, 
applying the most likely label. Each node on the output layer represents one label, 
and that node turns on or off according to the strength of the signal it receives from 
the previous layer’s input and parameters. 

Each output node produces two possible outcomes, the binary output values 0 or 1, 
because an input variable either deserves a label or it does not. After all, there is no 
such thing as a little pregnant. 

While neural networks working with labeled data produce binary output, the input 
they receive is often continuous. That is, the signals that the network receives as 

https://en.wikipedia.org/wiki/Law_of_excluded_middle
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input will span a range of values and include any number of metrics, depending on 
the problem it seeks to solve. 

For example, a recommendation engine has to make a binary decision about 
whether to serve an ad or not. But the input it bases its decision on could include 
how much a customer has spent on Amazon in the last week, or how often that 
customer visits the site. 

So the output layer has to condense signals such as $67.59 spent on diapers, and 15 
visits to a website, into a range between 0 and 1; i.e. a probability that a given 
input should be labeled or not. 

The mechanism we use to convert continuous signals into binary output is 
called logistic regression. The name is unfortunate, since logistic regression is used 
for classification rather than regression in the linear sense that most people are 
familiar with. It calculates the probability that a set of inputs match the label. 

 

Let’s examine this little formula. 

For continuous inputs to be expressed as probabilities, they must output positive 
results, since there is no such thing as a negative probability. That’s why you see 
input as the exponent of e in the denominator – because exponents force our results 
to be greater than zero. Now consider the relationship of e’s exponent to the 
fraction 1/1. One, as we know, is the ceiling of a probability, beyond which our 
results can’t go without being absurd. (We’re 120% sure of that.) 

As the input x that triggers a label grows, the expression e to the x shrinks toward 
zero, leaving us with the fraction 1/1, or 100%, which means we approach (without 
ever quite reaching) absolute certainty that the label applies. Input that correlates 
negatively with your output will have its value flipped by the negative sign on e’s 
exponent, and as that negative signal grows, the quantity e to the x becomes larger, 
pushing the entire fraction ever closer to zero. 

Now imagine that, rather than having x as the exponent, you have the sum of the 
products of all the weights and their corresponding inputs – the total signal passing 
through your net. That’s what you’re feeding into the logistic regression layer at 
the output layer of a neural network classifier. 

https://deeplearning4j.org/logistic-regression


 
Theory of Estimation 
            using  
Artificial Intelligence     Mr. Jaydip Mukhopadhyay Grp. No.:-7 

30  

 

With this layer, we can set a decision threshold above which an example is labeled 
1, and below which it is not. You can set different thresholds as you prefer – a low 
threshold will increase the number of false positives, and a higher one will increase 
the number of false negatives – depending on which side you would like to err. 

Loss Functions in DeepLearning4J 

DeepLearning4J supports the following Loss Functions. 

 MSE: Mean Squared Error: Linear Regression 
 EXPLL: Exponential log likelihood: Poisson Regression 
 XENT: Cross Entropy: Binary Classification 
 MCXENT: Multiclass Cross Entropy 
 RMSE_XENT: RMSE Cross Entropy 
 SQUARED_LOSS: Squared Loss 
 NEGATIVELOGLIKELIHOOD: Negative Log Likelihood 

Applying Loss Functions in DeepLearning4J 

The Loss Function is applied when building your output Layer. 

layer(1, new OutputLayer.Builder(LossFunction.NEGATIVELOGLIKELIHOOD) 

The JavaDoc for the Loss Function is part of ND4J javadoc and is available [here.] 
(https://nd4j.org/doc/org/nd4j/linalg/api/ops/LossFunction.html) 
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Neural Networks & Artificial Intelligence 

In some circles, neural networks are thought of as “brute force” AI, because they 
start with a blank slate and hammer their way through to an accurate model. They 
are effective, but to some eyes inefficient in their approach to modeling, which 
can’t make assumptions about functional dependencies between output and input. 

That said, gradient descent is not recombining every weight with every other to 
find the best match – its method of pathfinding shrinks the relevant weight space, 
and therefore the number of updates and required computation, by many orders of 
magnitude. 

Enterprise-Scale Deep Learning 

To train complex neural networks on very large datasets, a deep learning cluster 
using multiple chips, distributed over both GPUs and CPUs, is necessary if one is 
to train the network in a reasonable amount of time. Software engineers training 
those nets may avail themselves of GPUs in the cloud, or choose to depend on 
proprietary racks. Deeplearning4j scales out equally well on both, using Spark as 
an access layer to orchestrate multiple host threads over many cores. For support, 
please contact Skymind. 

 

Support Vector Regression: 

Support vector machine 
In machine learning, support vector machines (SVMs, also support vector 
networks) are supervised learning models with associated learning algorithms that 
analyze data used for classification and regression analysis. Given a set of training 
examples, each marked as belonging to one or the other of two categories, an SVM 
training algorithm builds a model that assigns new examples to one category or the 
other, making it a non-probabilistic binary linear classifier (although methods such 
as Platt scaling exist to use SVM in a probabilistic classification setting). An SVM 

http://nd4j.org/gpu_native_backends.html
https://deeplearning4j.org/spark
https://www.skymind.io/contact
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Probabilistic_classification
https://en.wikipedia.org/wiki/Binary_classifier
https://en.wikipedia.org/wiki/Linear_classifier
https://en.wikipedia.org/wiki/Platt_scaling
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model is a representation of the examples as points in space, mapped so that the 
examples of the separate categories are divided by a clear gap that is as wide as 
possible. New examples are then mapped into that same space and predicted to 
belong to a category based on which side of the gap they fall. 

In addition to performing linear classification, SVMs can efficiently perform a 
non-linear classification using what is called the kernel trick, implicitly mapping 
their inputs into high-dimensional feature spaces. 

When data are not labeled, supervised learning is not possible, and an unsupervised 
learning approach is required, which attempts to find natural clustering of the 
data to groups, and then map new data to these formed groups. The support vector 
clustering[2]algorithm created by Hava Siegelmann and Vladimir Vapnik, applies 
the statistics of support vectors, developed in the support vector machines 
algorithm, to categorize unlabeled data, and is one of the most widely used 
clustering algorithms in industrial applications. 

Applications 

SVMs can be used to solve various real world problems: 

 SVMs are helpful in text and hypertext categorization as their application can 
significantly reduce the need for labeled training instances in both the standard 
inductive and transductive settings. 

 Classification of images can also be performed using SVMs. Experimental 
results show that SVMs achieve significantly higher search accuracy than 
traditional query refinement schemes after just three to four rounds of relevance 
feedback. This is also true of image segmentation systems, including those 
using a modified version SVM that uses the privileged approach as suggested 
by Vapnik.  

 Hand-written characters can be recognized using SVM. 
 The SVM algorithm has been widely applied in the biological and other 

sciences. They have been used to classify proteins with up to 90% of the 
compounds classified correctly. Permutation tests based on SVM weights have 
been suggested as a mechanism for interpretation of SVM models. Support 
vector machine weights have also been used to interpret SVM models in the 
past. Posthoc interpretation of support vector machine models in order to 
identify features used by the model to make predictions is a relatively new area 
of research with special significance in the biological sciences. 

https://en.wikipedia.org/wiki/Kernel_trick
https://en.wikipedia.org/wiki/Unsupervised_learning
https://en.wikipedia.org/wiki/Unsupervised_learning
https://en.wikipedia.org/wiki/Data_clustering
https://en.wikipedia.org/wiki/Data_clustering
https://en.wikipedia.org/wiki/Support_vector_machine#cite_note-HavaSiegelmann-2
https://en.wikipedia.org/wiki/Hava_Siegelmann
https://en.wikipedia.org/wiki/Vladimir_Vapnik
https://en.wikipedia.org/wiki/Text_categorization
https://en.wikipedia.org/wiki/Transduction_(machine_learning)
https://en.wikipedia.org/wiki/Image_classification
https://en.wikipedia.org/wiki/Image_segmentation
https://en.wikipedia.org/wiki/Handwriting_recognition
https://en.wikipedia.org/wiki/Permutation_test
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Radial basis function network 

 

A radial basis function (RBF) is a real-valued function whose value depends 
only on the distance from the origin. Any function that satisfies the property is 
called a radial function. The norm is usually Euclidean distance, although other 
distance functions are also possible. 

 

Sums of radial basis functions are typically used to approximate given 
functions. This approximation process can also be interpreted as a simple kind 
of neural network; this was the context in which they originally surfaced, in 
work by David Broomhead and David Lowe in 1988, which stemmed from 
Michael J. D. Powell's seminal research from 1977. RBFs are also used as a 
kernel in support vector classification. 

 

In the field of mathematical modeling, a radial basis function network is an 
artificial neural network that uses radial basis functions as activation functions. 
The output of the network is a linear combination of radial basis functions of 
the inputs and neuron parameters. Radial basis function networks have many 
uses, including function approximation, time series prediction, classification, 
and system control. They were first formulated in a 1988 paper by Broomhead 
and Lowe, both researchers at the Royal Signals and Radar Establishment. 

 

Radial basis function (RBF) networks typically have three layers: an input 
layer, a hidden layer with a non-linear RBF activation function and a linear 
output layer. The input can be modeled as a vector of real numbers.  Functions 
that depend only on the distance from a center vector are radially symmetric 
about that vector, hence the name radial basis function. In the basic form all 
inputs are connected to each hidden neuron. 
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 Linear Regression: 
 

 

 

     Linear Regression Graph 

 

Linear regression is used for finding linear relationship between target and one or 
more predictors. There are two types of linear regression- Simple and Multiple. 

Simple Linear Regression 

Simple linear regression is useful for finding relationship between two continuous 
variables. One is predictor or independent variable and other is response or 
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dependent variable. It looks for statistical relationship but not deterministic 
relationship. Relationship between two variables is said to be deterministic if one 
variable can be accurately expressed by the other. For example, using temperature 
in degree Celsius it is possible to accurately predict Fahrenheit. Statistical 
relationship is not accurate in determining relationship between two variables. For 
example, relationship between height and weight. 

The core idea is to obtain a line that best fits the data. The best fit line is the one for 
which total prediction error (all data points) are as small as possible. Error is the 
distance between the point to the regression line. 

Real-time example 

We have a dataset which contains information about relationship between ‘number 
of hours studied’ and ‘marks obtained’. Many students have been observed and 
their hours of study and grade are recorded. This will be our training data. Goal is to 
design a model that can predict marks if given the number of hours studied. Using 
the training data, a regression line is obtained which will give minimum error. This 
linear equation is then used for any new data. That is, if we give number of hours 
studied by a student as an input, our model should predict their mark with minimum 
error. 

Y(pred) = b0 + b1*x 

The values b0 and b1 must be chosen so that they minimize the error. If sum of 
squared error is taken as a metric to evaluate the model, then goal to obtain a line 
that best reduces the error. 

 
Figure 2: Error Calculation 

If we don’t square the error, then positive and negative point will cancel out each 
other. 

For model with one predictor, 
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Figure 3: Intercept Calculation 

 
Figure 4: Co-efficient Formula 

Exploring ‘b1’ 

 If b1 > 0, then x(predictor) and y(target) have a positive relationship. That is 
increase in x will increase y. 

 If b1 < 0, then x(predictor) and y(target) have a negative relationship. That is 
increase in x will decrease y. 

Exploring ‘b0’ 

 If the model does not include x=0, then the prediction will become meaningless 
with only b0. For example, we have a dataset that relates height(x) and 
weight(y). Taking x=0(that is height as 0), will make equation have only b0 
value which is completely meaningless as in real-time height and weight can 
never be zero. This resulted due to considering the model values beyond its 
scope. 

 If the model includes value 0, then ‘b0’ will be the average of all predicted 
values when x=0. But, setting zero for all the predictor variables is often 
impossible. 

 The value of b0 guarantee that residual have mean zero. If there is no ‘b0’ term, 
then regression will be forced to pass over the origin. Both the regression co-
efficient and prediction will be biased. 

Co-efficient from Normal equations 

Apart from above equation co-efficient of the model can also be calculated from 
normal equation. 
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Figure 5: Co-efficient calculation using Normal Equation 

Theta contains co-efficient of all predictors including constant term ‘b0’. Normal 
equation performs computation by taking inverse of input matrix. Complexity of the 
computation will increase as the number of features increase. It gets very slow 
when number of features grow large. 

 

Below is the python implementation of the equation. 

 
 

  Python implementation of Normal Equation 

 

Optimizing using gradient descent 

Complexity of the normal equation makes it difficult to use, this is where gradient 
descent method comes into picture. Partial derivative of the cost function with 
respect to the parameter can give optimal co-efficient value. 
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Python code for gradient descent 

 

 

  Python Implementation of gradient descent 

 

 

 Reinforcement Learning: 

 

While neural networks are responsible for recent breakthroughs in problems 
like computer vision, machine translation and time series prediction – they 
can also combine with reinforcement learning algorithms to create 
something astounding like AlphaGo. 

 

Reinforcement learning refers to goal-oriented algorithms, which learn how to 
attain a complex objective (goal) or maximize along a particular dimension over 
many steps; for example, maximize the points won in a game over many moves. 
They can start from a blank slate, and under the right conditions they achieve 
superhuman performance. Like a child incentivized by spankings and candy, these 
algorithms are penalized when they make the wrong decisions and rewarded when 
they make the right ones – this is reinforcement. 

Reinforcement algorithms that incorporate deep learning can beat world champions 
at the game of Go as well as human experts playing numerous Atari video games. 
While that may sound trivial, it’s a vast improvement over their previous 
accomplishments, and the state of the art is progressing rapidly. 

https://deepmind.com/blog/alphago-zero-learning-scratch/
https://deeplearning4j.org/deep-learning-and-the-game-of-go
https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf
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Reinforcement learning solves the difficult problem of correlating immediate 
actions with the delayed returns they produce. Like humans, reinforcement 
learning algorithms sometimes have to wait a while to see the fruit of their 
decisions. They operate in a delayed return environment, where it can be difficult 
to understand which action leads to which outcome over many time steps. 

Reinforcement learning algorithms can be expected to perform better and better in 
more ambiguous, real-life environments while choosing from an arbitrary number 
of possible actions, rather than from the limited options of a video game. That is, 
with time we expect them to be valuable to achieve goals in the real world. 

Two reinforcement learning algorithms - Deep-Q learning and A3C - have been 
implemented in a Deeplearning4j library called RL4J. It can already play Doom. 

Reinforcement Learning Definitions 

Reinforcement learning can be understand using the concepts of agents, 
environments, states, actions and rewards, all of which we’ll explain below. 
Capital letters tend to denote sets of things, and lower-case letters denote a specific 
instance of that thing; e.g. A is all possible actions, while a is a specific action 
contained in the set. 

 Agent: An agent takes actions; for example, a drone making a delivery, or 
Super Mario navigating a video game. The algorithm is the agent. In life, the 
agent is you.1 

 Action (A): A is the set of all possible moves the agent can make. 
An action is almost self-explanatory, but it should be noted that agents 
choose among a list of possible actions. In video games, the list might 
include running right or left, jumping high or low, crouching or standing 
still. In the stock markets, the list might include buying, selling or holding 
any one of an array of securities and their derivatives. When handling aerial 
drones, alternatives would include many different velocities and 
accelerations in 3D space. 

 Discount factor: The discount factor is multiplied with future rewards as 
discovered by the agent in order to dampen their effect on the agent’s choice 
of action. It makes future rewards worth less than immediate rewards; i.e. it 

https://github.com/deeplearning4j/rl4j
https://www.youtube.com/watch?v=Pgktl6PWa-o
https://deeplearning4j.org/deepreinforcementlearning#one
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enforces a kind of short-term hedonism on the agent. Often expressed with 
the lower-case Greek letter gamma: γ. If γ is .8, and there’s a reward of 10 
points after 3 time steps, the present value of that reward is 0.8³ x 10. A 
discount factor of 1 would make future rewards worth just as much as 
immediate rewards. 

 Environment: The world through which the agent moves. The environment 
takes the agent’s current state and action as input, and returns as output the 
agent’s reward and next state. If you are the agent, the environment could be 
the laws of physics and the rules of society that process your actions and 
determine the consequences of them. 

 State (S): A state is a concrete and immediate situation in which the agent 
finds itself; i.e. a specific place and moment, an instantaneous configuration 
that puts the agent in relation to other significant things such as tools, 
obstacles, enemies or prizes. It can the current situation returned by the 
environment, or any future situation. Were you ever in the wrong place at 
the wrong time? That’s a state. 

 Reward (R): A reward is the feedback by which we measure the success or 
failure of an agent’s actions. For example, in a video game, when Mario 
touches a coin, he wins points. From any given state, an agent sends output 
in the form of actions to the environment, and the environment returns the 
agent’s new state (which resulted from acting on the previous state) as well 
as rewards, if there are any. Rewards can be immediate or delayed. They 
effectively evaluate the agent’s action. 

 Policy (π): The policy is the strategy that the agent employs to determine the 
next action based on the current state. It maps states to actions, the actions 
that promise the highest reward. 

 Value (V): The expected long-term return with discount, as opposed to the 
short-term reward R. Vπ(s) is defined as the expected long-term return of the 
current state under policy π. We discount rewards, or lower their estimated 
value, the further into the future they occur. See discount factor. 

 Q-value or action-value (Q): Q-value is similar to Value, except that it takes 
an extra parameter, the current action a. Qπ(s, a) refers to the long-term 
return of the current state s, taking action a under policy π. Q maps state-
action pairs to rewards. Note the difference between Q and policy. 

 Trajectory: A sequence of states and actions that influence those states. 
From the Latin “to throw across.” 

So environments are functions that transform an action taken in the current state 
into the next state and a reward; agents are functions that transform the new state 
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and reward into the next action. We can know the agent’s function, but we cannot 
know the function of the environment. It is a black box where we only see the 
inputs and outputs. Reinforcement learning represents an agent’s attempt to 
approximate the environment’s function, such that we can send actions into the 
black-box environment that maximize the rewards it spits out. 

 

In the feedback loop above, the subscripts denote the time steps t and t+1, each of 
which refer to different states: the state at moment t, and the state at moment t+1. 
Unlike other forms of machine learning – such as supervised and unsupervised 
learning – reinforcement learning can only be thought about sequentially in terms 
of state-action pairs that occur one after the other. 

Reinforcement learning judges actions by the results they produce. It is goal 
oriented, and its aim is to learn sequences of actions that will lead an agent to 
achieve its goal, or maximize its objective function. Here are some examples: 

 In video games, the goal is to finish the game with the most points, so each 
additional point obtained throughout the game will affect the agent’s 
subsequent behavior; i.e. the agent may learn that it should shoot battleships, 
touch coins or dodge meteors to maximize its score. 

 In the real world, the goal might be for a robot to travel from point A to 
point B, and every inch the robot is able to move closer to point B could be 
counted like points. 

Here’s an example of an objective function for reinforcement learning; i.e. the way 
it defines its goal. 
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We are summing reward function r over t, which stands for time steps. So this 
objective function calculates all the reward we could obtain by running through, 
say, a game. Here, x is the state at a given time step, and a is the action taken in 
that state. r is the reward function for x and a. (We’ll ignore γ for now.) 

Reinforcement learning differs from both supervised and unsupervised learning by 
how it interprets inputs. We can illustrate their difference by describing what they 
learn about a “thing.” 

 Unsupervised learning: That thing is like this other thing. (The algorithms 
learn similarities w/o names, and by extension they can spot the inverse and 
perform anomaly detection by recognizing what is unusual or dissimilar) 

 Supervised learning: That thing is a “double bacon cheese burger”. (Labels, 
putting names to faces…) These algorithms learn the correlations between 
data instances and their labels; that is, they require a labelled dataset. Those 
labels are used to “supervise” and correct the algorithm as it makes wrong 
guesses when predicting labels. 

 Reinforcement learning: Eat that thing because it tastes good and will keep 
you alive longer. (Actions based on short- and long-term rewards, such as 
the amount of calories you ingest, or the length of time you survive.) 
Reinforcement learning can be thought of as supervised learning in an 
environment of sparse feedback. 

The Relationship Between Machine Learning with Time 

You could say that an algorithm is a method to more quickly aggregate the lessons 
of time. Reinforcement learning algorithms have a different relationship to time 
than humans do. An algorithm can run through the same states over and over again 
while experimenting with different actions, until it can infer which actions are best 
from which states. Effectively, algorithms enjoy their very own Groundhog Day, 
where they start out as dumb jerks and slowly get wise. 

Since humans never experience Groundhog Day outside the movie, reinforcement 
learning algorithms have the potential to learn more, and better, than humans. 
Indeed, the true advantage of these algorithms over humans stems not so much 
from their inherent nature, but from their ability to live in parallel on many chips at 

http://www.imdb.com/title/tt0107048/
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once, to train night and day without fatigue, and therefore to learn more. An 
algorithm trained on the game of Go, such as AlphaGo, will have played many 
more games of Go than any human could hope to complete in 100 lifetimes.2 

Neural Networks and Deep Reinforcement Learning 

Where do neural networks fit in? Neural networks are the agent that learns to map 
state-action pairs to rewards. Like all neural networks, they use coefficients to 
approximate the function relating inputs to outputs, and their learning consists to 
finding the right coefficients, or weights, by iteratively adjusting those weights 
along gradients that promise less error. 

In reinforcement learning, convolutional networks can be used to recognize an 
agent’s state; e.g. the screen that Mario is on, or the terrain before a drone. That is, 
they perform their typical task of image recognition. 

But convolutional networks derive different interpretations from images in 
reinforcement learning than in supervised learning. In supervised learning, the 
network applies a label to an image; that is, it matches names to pixels. 

 

 Keras: 

 

Keras: The Python Deep Learning library 

 

https://deeplearning4j.org/deepreinforcementlearning#two
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Keras is a high-level neural networks API, written in Python and capable of 
running on top of TensorFlow, CNTK, or Theano. It was developed with a focus 
on enabling fast experimentation. Being able to go from idea to result with the 

least possible delay is key to doing good research. 

We use Keras if we need a deep learning library that: 

 Allows for easy and fast prototyping (through user friendliness, modularity, and 
extensibility). 

 Supports both convolutional networks and recurrent networks, as well as 
combinations of the two. 

 Runs seamlessly on CPU and GPU. 

Guiding principles 
 User friendliness. Keras is an API designed for human beings, not machines. It 

puts user experience front and center. Keras follows best practices for reducing 
cognitive load: it offers consistent & simple APIs, it minimizes the number of 
user actions required for common use cases, and it provides clear and actionable 
feedback upon user error. 

 Modularity. A model is understood as a sequence or a graph of standalone, 
fully-configurable modules that can be plugged together with as little 
restrictions as possible. In particular, neural layers, cost functions, optimizers, 
initialization schemes, activation functions, regularization schemes are all 
standalone modules that you can combine to create new models. 

 Easy extensibility. New modules are simple to add (as new classes and 
functions), and existing modules provide ample examples. To be able to easily 
create new modules allows for total expressiveness, making Keras suitable for 
advanced research. 

 Work with Python. No separate models configuration files in a declarative 
format. Models are described in Python code, which is compact, easier to 
debug, and allows for ease of extensibility. 

 

 TensorFlow: 

https://github.com/tensorflow/tensorflow
https://github.com/Microsoft/cntk
https://github.com/Theano/Theano
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TensorFlow is an open-source software library for dataflow programming across a 
range of tasks. It is a symbolic math library, and is also used for machine 
learning applications such as neural networks.  It is used for both research and 
production at Google often replacing its closed-source predecessor, DistBelief. 

TensorFlow was developed by the Google Brain team for internal Google use. It 
was released under the Apache 2.0 open source license on November 9, 2015. 

Features 

TensorFlow provides official Python API  and C API;  and without API stability 
guarantee: C++,  Go,  and Java.  Third party packages are available 
for C#,  Haskell,  Julia,  R,  Scala, Rust,  and OCaml.  

A "WebGL accelerated, browser based JavaScript library for training and 
deploying ML models" (where "for inference, TensorFlow.js with WebGL is 1.5-
2x slower than TensorFlow Python with AVX. For training, we have seen small 
models train faster in the browser and large models train up to 10-15x slower in the 
browser") was released by Tensorflow.org on March 30, 2018.  They also have 
with a note on "Swift for TensorFlow is an early stage research project. It has been 
released to enable open source development and is not yet ready for general use by 
machine learning developers." 

Applications 

Among the applications for which TensorFlow is the foundation, are automated 
image captioning software, such as DeepDream.  RankBrain now handles a 
substantial number of search queries, replacing and supplementing traditional static 
algorithm-based search results. 

https://en.wikipedia.org/wiki/Open-source
https://en.wikipedia.org/wiki/Library_(computing)
https://en.wikipedia.org/wiki/Dataflow_programming
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Neural_networks
https://en.wikipedia.org/wiki/Google
https://en.wikipedia.org/wiki/Google_Brain
https://en.wikipedia.org/wiki/Apache_License
https://en.wikipedia.org/wiki/Python_(software)
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/Go_(programming_language)
https://en.wikipedia.org/wiki/Java_(software)
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)
https://en.wikipedia.org/wiki/Haskell_(programming_language)
https://en.wikipedia.org/wiki/Julia_(programming_language)
https://en.wikipedia.org/wiki/R_(software)
https://en.wikipedia.org/wiki/Scala_(programming_language)
https://en.wikipedia.org/wiki/Rust_(programming_language)
https://en.wikipedia.org/wiki/OCaml
https://en.wikipedia.org/wiki/WebGL
https://en.wikipedia.org/wiki/DeepDream
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K- NEAREST NEIGHBOR ALGORITHM: 

 
Introduction 
 
Nowadays money investment in stock market gains major attention because of its 

dynamic nature. So the significant issue in market finance is discovering well 

organized approaches to outline and envision the stock market information to 

provide individuals or organizations helpful data about the behavior of the market 

for making decision about investment.The huge amount of important information 

produced by the stock market has attracted researchers to investigate this issue 

utilizing distinctive approaches. Since stock markets produce huge datasets it data 

mining techniques is found to be more efficient.Data mining is utilized for 

excavate data from databases and discover the meaningful patterns from the 

database. The usefulness of this data makes data mining imperative and 

necessary.The essentials of data mining in finance are originating from the need to 

adopt specific well organized criteria to predict exactness, facilitate multi-

resolution calculation. 

 
 k-Nearest Neighbor Classifier (kNN)  
K-nearest neighbor technique is a machine learning algorithm that is considered as 
simple to implement (Aha et al. 1991). The stock prediction problem can be 
mapped into a similarity based classification. The historical stock data and the test 
data is mapped into a set of vectors. Each vector represents N dimension for each 
stock features. Then, a similarity metric such as Euclidean distance is computed to 
take a decision. In this section, a description of kNN is provided. kNN is 
considered a lazy learning that does not build a model or function previously, but 
yields the closest k records of the training data set that have the highest similarity 
to the test (i.e. query record). Then, a majority vote is performed among the 
selected k records to determine the class label and then assigned it to the query 
record. 
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The prediction of stock market closing price is computed using kNN as follows: 

1 Determine the number of nearest neighbors, k.  
2 Compute the distance between the training samples and the query record. 
c) Sort all training records according to the distance values.  
d) Use a majority vote for the class labels of k nearest neighbors, and assign it as 
a prediction value of the query record. 

 

Basics of KNN 
 
The KNN is the principal and most straightforward classification technique when 

the information about the distribution of the data is insufficient. This convention 

basically holds the whole training set during learning and allocates to every query a 

class characterize by the majority label of its k-nearest neighbors in the training 

set. The Nearest Neighbor (NN) principle is the least complex type of KNN when 

K = 1. 

 
In this algorithm every training samples ought to be grouped to its samples 

surrounded by it. Subsequently, if the classification of any of the sample data is 

obscure, then it could be anticipated by considering the classification of its nearest 

neighbor tests. Given an obscure sample and a training set consisting of samples, 

all the distances between the obscure sample and the entire sample in the training 

set can be calculated by utilizing the accompanying mathematical statement where, 

x1, x2, x3,xp are anticipators of the first sample and u1, u2,u3,… up are anticipators of 

the second sample. If distance is of smallest value, then the samples in the training 

set is close to the obscure sample. Hence, the obscure sample may be categorized 

based on this nearest neighbor classification. 
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Fig 4.1 illustrates the KNN decision rule for K= 1 and K= 3 for a set of samples 

divided into 2 classes.In Fig 4.1(a), an obscure sample (unknown sample) is 

categorized by using only one known sample; In Fig 4.1(b) more than one known 

sample is used. In the last case, the parameter K is set to 3, hence the closest three 

samples is considered for classifying the obscure one. Two of them belong to the 

same class, whereas only one belongs to the other class. In both cases, the 

unknown sample is classified as belonging to the class on the left. Fig 4.2 shows 

the pseudo code for the KNN algorithm 

 

 

 

 

 

 

 

Pseudo code for KNN algorithm 
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Input: Finite set A , Finite Set B, k, function c:B->{1,2,….n} 
 
 

Output: r:A->{1,2,…..n} 
 
 

Begin 
 

For each x in A do 
 
 

Let L<- {} 
 

For each b in B add (a(x,b), c(b)) to L 
 
 

Sort the elements in L with the first components 
 
 

Compute the class labels from the first k elements from L 
 
Let r(x) be the class containing highest number of occurrences 

 
 

End 
 

Return r 
 
 

End  
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The classifier performance is principally controlled by the decision of K and in 

addition the distance metric applied [20-25]. This evaluation is influenced by 

the sensitivity of the choosing the neighborhood size K, since local region 

radius is calculated by the Kth nearest neighbor distance to the query and diverse 

value of K yields various conditional class probabilities. 

 
 
 
 Mathematical Calculations and Visualizations Models 
 
This represents an overview of equations that were applied in this article for 
predicting next day price. The calculations includes error estimation, total sum 
of squared error, average error, cumulative closing price when sorted using 
predicted values, k-values and training Root Mean Square (RMS) errors. 
 

a) Root Mean Square Deviation (RMSD) is accuracy metric that computes 
the differences between the estimated values, Y, and the actual values, X. 
The total of RMSD is aggregated into a single value measure. RMSD = 
SQRT(Y-X)2.  

b) Explained Sum of Squares (ESS) is computed as follows: 
 

ESS =   
Where yi: is the predicted variable, and y is the actual value.  

c) Average Estimated Error (AEE)  
AEE is the total sum of RMS errors for all variables in stock records 
divided by the total number of the records.   
AEE = 

 

 

 

Visualization Graph 
 
To evaluate the performance of kNN learning model, lift graph is applied and 
drawn for different companies’ stock values. The lift chart symbolizes the 
enhancement that a data mining model offers when distinguished against a 
random estimation, and the change is expressed in terms of lift score. Through 
contrasting the lift scores for a variety of parts of the data set and for different 
models, it can then be decided which model is supreme and which percentage of 
the cases within the data set would gain from employing the predictions model. 
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Furthermore, using the lift chart assist in distinguishing how accurate 
predictions are for various models with identical predictable characteristic. The 
lift graph also shows the ratio between the results obtained using the predictive 
model or not. The other graph applied is the plot curves to show the relation 
between the actual and predicted stock price.  
 
 
 
 

Prediction Performance Evaluations 
 
Table 6 represents a summary of the total squared errors, RMS errors and the 
average errors for the five companies. The residuals offer the differences 
between the predicted values and actual the values in the sample data. The table 
also shows that the values of errors are very small which indicate that the actual 
value and predicted value are close. This yields a high accuracy of using the 
kNN algorithm in predicting stock values. 
. 

 

 

Non-Linear Regression Results 
 
Non-linear regression is a data analysis technique in which the observed data is 
incorporated into a model presented in a mathematical non-linear function 
combining the model parameters that relies on independent variables used. 
GraphPad Prism v5.02 software was used to apply centered second order 
polynomial (quadratic) non-linear regression which has the following formula:  

 
Price = B0 + B1 (day – mean (day)) + B2 (day – 
mean (day))

2 
Where:  
B0, B1 and B2: Constants. 
Day: Actual day in which we will predict the price. 
Price: Predicted price depending on the day. 
 
 

 

 

 

 

 Kalman Filter: 
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In 1960, R. E. Kalman introduced a recursive algorithm to solve the linear 
filtering and prediction problem using a state-space approach. The Kalman filter 
is a linear, discrete-time system which provides a recursive solution to a 
set of difference equations. The recursive nature of the Kalman filter requires 
only the previous values of the state vector to be retained to produce future 
estimates. This recursive algorithm makes the Kalman filter useful for 
real-time applications. The state space format makes it easy to implement the 
Kalman filter on a digital computer. The Kalman filter provides the optimum 
estimate in a least squares sense of a random process which is being 
sampled with noisy measurements.  
 
   The Kalman filter can be used to "filter" the best estimate or 
it can be used to forecast future values of the random process. The Kalman filter 
models a process as the output of white noise passing through a linear system. 
The states are selected such that the filter output is formed from the linear 
combination of the states. A Kalman filter can also be used to model non-
stationary processes if a linear differential equation relating the process to white 
noise can be determined. If the model parameters are time-varying, an adaptive 
Kalman filter can often be used to estimate the non-stationary process. 

 
Algorithm: 
 
The Kalman filter is based on a discrete state space approach where the 
random process is modeled by a state equation and a measurement equation 
. 
 
Xk+1 = «kXk + Hk  
zk = HkSk + vk  

For a process having a single noisy output and modeled using n internal states 
and m white noise inputs, x is the n-dimensional state vector, w is the m-
dimensional white noise input vector, z is the noisy output measurement, and v 
is the additive measurement noise. For the single output system, z and v are both 
scalars. The other parameters in the state description are the state transition 
matrix, and the connection vector, H. The (nxn) state transition matrix 
describes the change in the states from tjj to tj^+i when there are no driving 
functions, i.e., w = 0. The n-dimensional connection vector describes the linear 
combination of states which comprise the output. The process and measurement 
noise parameters, w and v, respectively, are uncorrelated white Gaussian 
sequences with zero mean and variances (covariances) defined by: 
E [wi*wjjT] r Qj^ i=k  
0 ijlls. 

E [vi*vk] = Rjj. i=k  
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0 i/k 
E [wi*vij] = 0 for all i and k (3-4) 
The values of Q and R are calculated prior to execution of the Kalman filter. 
Each iteration of the Kalman filter is started with an a priori estimate, x"k, 
which is the expected value of the 
state just before assimilating the measurement. The estimation error, e'jj, 
between the actual state, x^» and the a priori state estimate, x~je is defined by 
(3-5). S"k = ak - A"k (3-5) 
The estimation error is assumed to have zero mean and a covariance matrix, 
defined as p-k = E[e-k g-k?] = EC(xk - S-k)(2Sk - x-k)T] (3-6) The P~1j matrix 
describes the confidence level of the a priori state estimate accuracy. After the 
current measurement, z^, the a priori state 
estimate is updated to incorporate the measurement data. The a posteriori 
estimate, xjj, is defined by the following update equation (3-7), Ak - A"k + 
Ek(zk - HkÉ"k) (3-7) 
where is the Kalman gain vector at time, t^. The n-dimensional Kalman gain 
vector contains the weighting factors used to combine the new measurement 
with the a priori estimate to achieve an optimal a posteriori estimate. An 
optimum estimate minimizes the mean-square error of the updated estimate. The 
Kalman gain vector which produces an optimal estimate takes into account the 
confidence in the a priori estimate, P"k, and the reliability of the 

measurement, Rk- The Kalman gain is given by (3-8). 
Sk = P-kakT(HkP-kakT + Bk)-' (3-8) 
With a scalar measurement, the inversion in the Kalman gain is just a scalar 
inversion. 
The error covariance matrix for the a posteriori state estimate is calculated from 
Pk = (I - KkHk)P"k (3-9) 
where I is an (n x n) identity matrix. 
At this point, an updated state estimate and its error covariance matrix have 
been calculated for the measurement at step k. To prepare for the next iteration 
of the Kalman filter, an a priori state estimate, x"k+i, and an a priori error 
covariance matrix, P~k+1> must be projected ahead from their a posteriori 
estimates. *~k+l for the next measurement can be estimated by taking the 
expected value of the state equation (3-la). Since the expected value 
of wjj is zero, the a priori estimate becomes *"k+l = ®k*k • (3-10) The a priori 
error covariance matrix is projected ahead by 
P"k+1 = ^k^k^k"^ + Ok- (3-11) 
The recursive Kalman filter algorithm consists of the 
Kalman gain equation (3-8), state estimate (3-7) and error Govariance (3-9) 
update equations, and state estimate (3-10) 
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and error covariance (3-11) projection equations. Initially, the Kalman filter 
must be provided with an estimate of the state vector, xq", and its error 
covariance matrix, Pq". 
 
a block diagram of the Kalman filter" algorithm is shown in Figure 3-1. 

 

 
 

The Kalman filter can also provide multiple step ahead forecasts. The N-step 
ahead forecast equation is x"k+N = @k+N,kAk (3-12) where @k+N,k is the N-
step ahead transition matrix. This forecast equation is kept separate from the 
recursive Kalman filter algorithm. 
 
 
 

3.  Objective of the Project: 

 
i. Our project  presents a computational approach for predicting the S&P CNX 
Nifty 50 Index.  
 
ii. An AI based model has been used in predicting the direction of the 
movement of the closing value of the index. 
 
iii. The model presented in the project also confirms that it can be used to 
predict price index value of the stock market.  
 
iv. After studying the various features of the AI model, an optimal model is 
proposed for the purpose of forecasting.  
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v. The model has used the pre-processed data set of closing value of S&P CNX 
Nifty 50 Index. 
 
vi. The data set encompassed the trading days of a single company for the initial 
development of the model. Work with a larger data set is planned in further 
progress of the model. 
 
vii. Accuracy of the performance of the AI model  is compared using various 
out of sample performance measures. 
 
viii. This project examines the use of the Kalman filter to forecast intraday stock 
and commodity prices.  
 
ix. The price forecasts are based on a market's price history with no 
external information included.  
 
x. For the Kalman filter to produce beneficial forecasts, the market must not be 
a random walk process, but must exhibit a statistically significant auto 
correlation pattern which can be modeled. 
 
xi. Once an appropriate Kalman filter model is determined, strategies for 
increasing profits can be studied. 

4.  System Design: 

 

 Hardware requirements: 

 GPU:    4 x NVIDIA PASCAL GTX 1080Tis 11 GB 
 

 CPU:    Intel 3.8 GHz Core i7-6850K 
 

 RAM:  64 GB DDR4-2666 System Memory 
 

 Hard Disk Space:  1 TB SATA SSD for OS + 3 TB 7200 rpm HDD 
for Long-term Data Storage. 
 

 Cooling:  Air cooling  / Water cooling. 

 Power Supply:  1400 to 1600 watts. 

 

 Software  requirements: 
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 Anaconda Navigator 

 Jupyter Notebook 

 Python 3 and different Python libraries, Deep Learning Libraries and 
Sentiment analysis libraries such as: 

 TensorFlow 

 Keras 

 scikit-learn 

 numpy 

 scipy 

 nsepy 

 pykalman 

 pandas 

 etc. 

 

 Ubuntu 16.04 LTS OS 

 Text editor 

 

5. Methodology for implementation 

(Formulation/Algorithm): 

 

Support Vector Regression: 

SVR Linear : 

We are reading the dataset and putting them into an array for further operations 
to be performed. We are interested in the closing price and the dates. So we read 
those values accordingly.After we have our desired array we can start our 
operations. We are putting our values through SVR Linear Classifier as 
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explained in the Review of Literature. Then we are getting our desired values. 
We are then plotting a graph of it with the help of Matplotlib.  

 

SVR Polynomial: 

 We are reading the dataset and putting them into an array for further operations 
to be performed. We are interested in the closing price and the dates. So we read 
those values accordingly.After we have our desired array we can start our 
operations. We are putting our values through SVR Polynomial Classifier as 
explained in the Review of Literature. Then we are getting our desired values. 
We are then plotting a graph of it with the help of Matplotlib.  

 

SVR RBF: 

 We are reading the dataset and putting them into an array for further operations 
to be performed. We are interested in the closing price and the dates. So we read 
those values accordingly.After we have our desired array we can start our 
operations. We are putting our values through SVR RBF Classifier as explained 
in the Review of Literature. Then we are getting our desired values. We are then plotting a 

graph of it with the help of Matplotlib. 

 

KNN METHODOLOGY: 

 
K nearest neighbors is a simple algorithm that stores all available cases and 
classifies new cases based on a similarity measure (e.g., distance functions). 
KNN has been used in statistical estimation and pattern recognition. 
A case is classified by a majority vote of its neighbors, with the case being 
assigned to the class most common amongst its K nearest neighbors measured 
by a distance function. If K = 1, then the case is simply assigned to the class of 
its nearest neighbor. 
Choosing the optimal value for K is best done by first inspecting the data. In 
general, a large K value is more precise as it reduces the overall noise but there 
is no guarantee. Cross-validation is another way to retrospectively determine a 
good K value by using an independent dataset to validate the K value. 
Historically, the optimal K for most datasets has been between 3-10. That 
produces much better results than 1NN.. 
As an example, consider the following table of data points containing two 
features:Now, given another set of data points (also called testing data), allocate 
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these points a group by analyzing the training set. Note that the unclassified 
points are marked as ‘yellow’. 
 

 

 

Intuition 

 
If we plot these points on a graph, we may be able to locate some clusters, or 
groups. Now, given an unclassified point, we can assign it to a group by 
observing what group its nearest neighbours belong to. This means, a point 
close to a cluster of points classified as ‘Red’ has a higher probability of getting 
classified as ‘Red’. 

 

 

Intuitively, we can see that the first point (2.5, 7) should be classified as ‘Blue’ 
and the second point (5.5, 4.5) should be classified as ‘Red’. 
 
ALGORITHM: 

1. Let m be the number of training data samples. Let p be an unknown point. 
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2.     Store the training samples in an array of data points arr[]. This means 
each element of this array represents a tuple (x, y). 

3.     for i=0 to m: 

4.       Calculate Euclidean distance d(arr[i], p). 

5.     Make set S of K smallest distances obtained. Each of these distances 
correspond to an already classified data point. 

6. Return the majority label among S. 

K can be kept as an odd number so that we can calculate a clear majority in the 
case where only two groups are possible (e.g. Red/Blue). With increasing K, we 
get smoother, more defined boundaries across different classifications. Also, the 
accuracy of the above classifier increases as we increase the number of data 
points in the training set. 
 
Reinforcement Learning and Sentiment Analysis(Random Forest 

Model, Linear Regression Model, Multi Layer Perceptron or 

Deep Neural Network Model): 

In Reinforcement Learning, a model can learn from its past predictive ability, 
giving itself a reward only for good behaviour, essentially self improving over 
time: 

 

    Reinforcement  Learning 



 
Theory of Estimation 
            using  
Artificial Intelligence     Mr. Jaydip Mukhopadhyay Grp. No.:-7 

60  

 

 

        

 

 

 

We’ll  use the Sentiment from new headlines and historical price charts together 
to predict future prices in Python, i.e., Sentiment Analysis + 

Reinforcement Learning: 
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We’ll  use two Machine Learning libraries for our problem: 

The first is called NLTK(Natural Language Tool Kit) and the second is Scikit-

Learn. 

The data set we’re using is the adjusted closing price gathered from the past 10 
years for Microsoft stock. We’ll use 8 of these years for training and 2 of these 
years for testing as well as a data set of the NYT articles’ headlines about 
Microsoft for Sentiment Analysis: 

MS-Data.csv: 

Date,Open,High,Low,Close,Volume,Adj Close 

2016-12-
30,19833.169922,19852.550781,19718.669922,19762.599609,271910000,1976
2.599609 

2016-12-
29,19835.460938,19878.439453,19788.939453,19819.779297,172040000,1981
9.779297 
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2016-12-
28,19964.310547,19981.109375,19827.310547,19833.679688,188350000,1983
3.679688 

2016-12-
27,19943.460938,19980.240234,19939.800781,19945.039062,158540000,1994
5.039062 

2016-12-
23,19908.609375,19934.150391,19899.060547,19933.810547,158260000,1993
3.810547 

2016-12-
22,19922.679688,19933.830078,19882.189453,19918.880859,258290000,1991
8.880859 

2016-12-
21,19968.970703,19986.560547,19941.960938,19941.960938,256640000,1994
1.960938 

2016-12-
20,19920.589844,19987.630859,19920.419922,19974.619141,284080000,1997
4.619141 

2016-12-
19,19836.660156,19917.779297,19832.949219,19883.060547,302310000,1988
3.060547 

2016-12-
16,19909.009766,19923.169922,19821.00,19843.410156,573470000,19843.41
0156 

2016-12-
15,19811.50,19951.289062,19811.50,19852.240234,357350000,19852.240234 

2016-12-
14,19876.130859,19966.429688,19748.669922,19792.529297,408430000,1979
2.529297 

2016-12-
13,19852.210938,19953.75,19846.449219,19911.210938,388420000,19911.21
0938 

………………………………………………....... 
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……………………………………………………………………… 

……………………………………………………………………………. . . . . .  

 

 

 NYT-Headlines-Data.pkl : 

€cpandas.core.frame 

DataFrame 

q)• q}q                                          (U
 _metadataq
                                                                                                                                  
]qU
                                                                                                                                  
_typqU dataframeqU_dataqcpandas.core.internals 

BlockManager 

q )• q 

(]q 
(cpandas.indexes.base 

_new_Index 

qcpandas.indexes.base 

Index 

q 
}q 

(U
                                                                                                                                  
dataqcnumpy.core.multiarray 

_reconstruct 

qcnumpy 
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ndarray 

qK …Ub‡Rq(KK                                          …cnumpy 

dtype 

qUO8K 
K‡Rq(K                                          U|NNNJÿÿÿÿJÿÿÿÿK?tb‰]q(UcloseqU adj 
closeqUarticlesqetbU
                                                                                                                                  
nameqNu†Rqcpandas.tseries.index 

_new_DatetimeIndex 

qcpandas.tseries.index 

DatetimeIndex 

q}q(Utzq-NU
                                                                                                                                  
freqqcpandas.tseries.offsets 

Day 

q )• q!}q"(U normalizeq#‰U_offsetq$cdatetime 

timedelta 

……………………………………. 

…………………………………………… 

………………………………………………………….. 

 

 

 

We’ve used pandas data processing tool to combine both datasets into one 
dataframe: 

# Reading the saved data pickle file 
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df_stocks = pd.read_pickle('/Users/Dinesh/Documents/Project Stock 

predictions/data/pickled_ten_year_filtered_data.pkl') 

df_stocks['prices'] = df_stocks['adj close'].apply(np.int64) 

# selecting the prices and articles 

df_stocks = df_stocks[['prices', 'articles']] 

df_stocks['articles'] = df_stocks['articles'].map(lambda x: x.lstrip('.-')) 

 

 

We are next going to perform Sentiment Analysis on these headlines from the 
NYT. So, we use the sentiment intensity analyzer : 

# Adding new columns to the data frame 

df["compound"] = '' 

df["neg"] = '' 

df["neu"] = '' 

df["pos"] = '' 

 

 

This will output sentiment scores for four classes of sentiments: Negative, 
Neural, Positive and Compound, which is the aggregated score.: 

from nltk.sentiment.vader import SentimentIntensityAnalyzer 

import unicodedata 

sid = SentimentIntensityAnalyzer() 

for date, row in df_stocks.T.iteritems(): 

    try: 
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        sentence = unicodedata.normalize('NFKD', df_stocks.loc[date, 

'articles']).encode('ascii','ignore') 

        ss = sid.polarity_scores(sentence) 

        df.set_value(date, 'compound', ss['compound']) 

        df.set_value(date, 'neg', ss['neg']) 

        df.set_value(date, 'neu', ss['neu']) 

        df.set_value(date, 'pos', ss['pos']) 

    except TypeError: 

        print df_stocks.loc[date, 'articles'] 

        print date 

 

There are actually several popular sentiment lexicons out there. They are made 
manually by humans and pattern recognition algorithms use them to summarize 
the polarities of entire documents: 
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We’ll first try out a Random Forest Model: 

from treeinterpreter import treeinterpreter as ti 

from sklearn.tree import DecisionTreeRegressor 

from sklearn.ensemble import RandomForestRegressor 

from sklearn.metrics import classification_report,confusion_matrix 

 

rf = RandomForestRegressor() 

rf.fit(numpy_df_train, y_train) 

 

 

     Random  Forest  Model 
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The second model we use in Linear Regression which will draw the line of best 
fit between our variables: 

from treeinterpreter import treeinterpreter as ti 

from sklearn.tree import DecisionTreeRegressor 

from sklearn.ensemble import RandomForestRegressor 

from sklearn.linear_model import LogisticRegression 

from datetime import datetime, timedelta 

 

# average_upcoming_5_days_predicted += predictions_df.loc[temp_date, 

'prices'] 

# # Converting string to date time 

# temp_date = datetime.strptime(temp_date, "%Y-%m-%d").date() 

# # Adding one day from date time 

# difference = temp_date + timedelta(days=1) 

# # Converting again date time to string 

# temp_date = difference.strftime('%Y-%m-%d') 

         

# start_year = datetime.strptime(train_start_date, "%Y-%m-

%d").date().month 

 

years = [2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016] 

prediction_list = [] 

for year in years: 
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    # Splitting the training and testing data 

    train_start_date = str(year) + '-01-01' 

    train_end_date = str(year) + '-10-31' 

    test_start_date = str(year) + '-11-01' 

    test_end_date = str(year) + '-12-31' 

    train = df.ix[train_start_date : train_end_date] 

    test = df.ix[test_start_date:test_end_date] 

     

    # Calculating the sentiment score 

    sentiment_score_list = [] 

    for date, row in train.T.iteritems(): 

        sentiment_score = np.asarray([df.loc[date, 'compound'],df.loc[date, 

'neg'],df.loc[date, 'neu'],df.loc[date, 'pos']]) 

        #sentiment_score = np.asarray([df.loc[date, 'neg'],df.loc[date, 'pos']]) 

        sentiment_score_list.append(sentiment_score) 

    numpy_df_train = np.asarray(sentiment_score_list) 

    sentiment_score_list = [] 

    for date, row in test.T.iteritems(): 

        sentiment_score = np.asarray([df.loc[date, 'compound'],df.loc[date, 

'neg'],df.loc[date, 'neu'],df.loc[date, 'pos']]) 

        #sentiment_score = np.asarray([df.loc[date, 'neg'],df.loc[date, 'pos']]) 

        sentiment_score_list.append(sentiment_score) 

    numpy_df_test = np.asarray(sentiment_score_list) 
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    # Generating models 

    lr = LogisticRegression() 

    lr.fit(numpy_df_train, train['prices']) 

     

 

    prediction = lr.predict(numpy_df_test) 

    prediction_list.append(prediction) 

    #print train_start_date + ' ' + train_end_date + ' ' + test_start_date + ' ' 

+ test_end_date 

    idx = pd.date_range(test_start_date, test_end_date) 

    #print year 

    predictions_df_list = pd.DataFrame(data=prediction[0:], index = idx, 

columns=['prices']) 

     

    difference_test_predicted_prices = offset_value(test_start_date, test, 

predictions_df_list) 

    # Adding offset to all the advpredictions_df price values 

    predictions_df_list['prices'] = predictions_df_list['prices'] + 

difference_test_predicted_prices 

    predictions_df_list 

 

    # Smoothing the plot 

    predictions_df_list['ewma'] = pd.ewma(predictions_df_list["prices"], 

span=10, freq="D") 

    predictions_df_list['actual_value'] = test['prices'] 
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    predictions_df_list['actual_value_ewma'] = 

pd.ewma(predictions_df_list["actual_value"], span=10, freq="D") 

    # Changing column names 

    predictions_df_list.columns = ['predicted_price', 

'average_predicted_price', 'actual_price', 'average_actual_price'] 

    predictions_df_list.plot() 

    predictions_df_list_average = 

predictions_df_list[['average_predicted_price', 'average_actual_price']] 

    predictions_df_list_average.plot() 

     

#     predictions_df_list.show() 

     

 

The third model we use is a Multi Layer Perceptron(MLP) classifier, also called 
a Neural Network: 

from sklearn.neural_network import MLPClassifier 

from datetime import datetime, timedelta 

 

# average_upcoming_5_days_predicted += predictions_df.loc[temp_date, 

'prices'] 

# # Converting string to date time 

# temp_date = datetime.strptime(temp_date, "%Y-%m-%d").date() 

# # Adding one day from date time 

# difference = temp_date + timedelta(days=1) 

# # Converting again date time to string 
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# temp_date = difference.strftime('%Y-%m-%d') 

         

# start_year = datetime.strptime(train_start_date, "%Y-%m-

%d").date().month 

 

years = [2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016] 

prediction_list = [] 

for year in years: 

    # Splitting the training and testing data 

    train_start_date = str(year) + '-01-01' 

    train_end_date = str(year) + '-10-31' 

    test_start_date = str(year) + '-11-01' 

    test_end_date = str(year) + '-12-31' 

    train = df.ix[train_start_date : train_end_date] 

    test = df.ix[test_start_date:test_end_date] 

     

    # Calculating the sentiment score 

    sentiment_score_list = [] 

    for date, row in train.T.iteritems(): 

        sentiment_score = np.asarray([df.loc[date, 'compound'],df.loc[date, 

'neg'],df.loc[date, 'neu'],df.loc[date, 'pos']]) 

        #sentiment_score = np.asarray([df.loc[date, 'neg'],df.loc[date, 'pos']]) 

        sentiment_score_list.append(sentiment_score) 

    numpy_df_train = np.asarray(sentiment_score_list) 
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    sentiment_score_list = [] 

    for date, row in test.T.iteritems(): 

        sentiment_score = np.asarray([df.loc[date, 'compound'],df.loc[date, 

'neg'],df.loc[date, 'neu'],df.loc[date, 'pos']]) 

        #sentiment_score = np.asarray([df.loc[date, 'neg'],df.loc[date, 'pos']]) 

        sentiment_score_list.append(sentiment_score) 

    numpy_df_test = np.asarray(sentiment_score_list) 

     

    # Generating models 

    mlpc = MLPClassifier(hidden_layer_sizes=(100, 200, 100), 

activation='relu',  

                         solver='lbfgs', alpha=0.005, learning_rate_init = 0.001, 

shuffle=False) # span = 20 # best 1 

    mlpc.fit(numpy_df_train, train['prices'])    

    prediction = mlpc.predict(numpy_df_test) 

     

    prediction_list.append(prediction) 

    #print train_start_date + ' ' + train_end_date + ' ' + test_start_date + ' ' 

+ test_end_date 

    idx = pd.date_range(test_start_date, test_end_date) 

    #print year 

    predictions_df_list = pd.DataFrame(data=prediction[0:], index = idx, 

columns=['prices']) 

     

    difference_test_predicted_prices = offset_value(test_start_date, test, 

predictions_df_list) 
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    # Adding offset to all the advpredictions_df price values 

    predictions_df_list['prices'] = predictions_df_list['prices'] + 

difference_test_predicted_prices 

    predictions_df_list 

 

    # Smoothing the plot 

    predictions_df_list['ewma'] = pd.ewma(predictions_df_list["prices"], 

span=20, freq="D") 

    predictions_df_list['actual_value'] = test['prices'] 

    predictions_df_list['actual_value_ewma'] = 

pd.ewma(predictions_df_list["actual_value"], span=20, freq="D") 

    # Changing column names 

    predictions_df_list.columns = ['predicted_price', 

'average_predicted_price', 'actual_price', 'average_actual_price'] 

    predictions_df_list.plot() 

    predictions_df_list_average = 

predictions_df_list[['average_predicted_price', 'average_actual_price']] 

    predictions_df_list_average.plot() 

     

#     predictions_df_list.show() 
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 Fig.:    Multi   Layer  Perceptron Or  Deep  Neural  Network 

 

 

 

We’ll input our data on the three initialized models and observe the results in 
graph for each of them: 
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As we can see above, the Random Forest Model doesn’t look nice, it’s pretty 
off. 

 

The Linear Regression Model looks a little bit better, but it is still pretty bad. 

 

But the MLP Classifier looks the best of all of them. 
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Deep Learning Model: 

 Here we’ll build a Deep Learning model to predict stock prices using Keras 
with TensorFlow backend. For our training data, we’ll be using the daily closing 
price of the S&P 500 from January 2000 to August 2016. 

sp500.csv : 

1455.219971 

1399.420044 

1402.109985 

1403.449951 

1441.469971 

1457.599976 

1438.560059 

1432.25 

1449.680054 

1465.150024 

1455.140015 

1455.900024 

1445.569946 

1441.359985 

1401.530029 

1410.030029 

1404.089966 



 
Theory of Estimation 
            using  
Artificial Intelligence     Mr. Jaydip Mukhopadhyay Grp. No.:-7 

78  

 

1398.560059 

1360.160034 

1394.459961 

1409.280029 

1409.119995 

1424.969971 

. 

. 

. 

. 

This is a series of data points indexed in time-order or a time series. Our goal 
will be to predict the closing price for any given day after training. 

 

We can load our data using a custom load_data() function: 

X_train, y_train, X_test, y_test = lstm.load_data('sp500.csv', 50, True) 

 

It essestially just reads our .csv file into an array of values and normalizes 
them. Rather than feeding those values directly to our models, normalizing them 
improves convergence.  
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We use the following equation to normalize each value to reflect percentage 
changes from the starting point: 

 

 

Where,   pi  = each price 

     P0 = initial price  

     Ni = normalized each price 

 

So, we divide each price by the initial price and subtract 1 to get the normalized 
price. When our model later makes prediction, we’ll denormalize the data  using 
the following formula to get a real world number out of it: 
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To build our model, we’ll first initialize it as sequential since it’ll be a linear 
stack of layers. Then we’lll add our first layer which is an LSTM layer: 

#Step-2 Build model 

model = Sequential() 

model.add(LSTM( 

 input_dim = 1, 

 output_dim = 50, 

 return_sequences = True)) 

model.add(Dropout(0.2)) 

 

So, what’s LSTM? 

It’s easy to record the words(of a song) forward. But could we sing them 
backwards? No. The reason is, we learn these words in a sequence: it’s 
Conditional Meomory. We can access the words if we could access the 
words before it: 

 

 

Memory matters when we have sequences.  Our thoughts have persistence, but 
Feed-Forward Neural Networks don’t.: 
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Feed-Forward Neural Networks accept a fixed size vector as input, like an 
image. So, we could not use it to predict next frame in a movie, because, that 
would require a series of image vectors as inputs, not just one, since the 
probability of a certain event happening will depend on every frame that 
happened before it: 
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We need a way to allow information to persist. And that’s why we’ll use a 
Recurrent Neural Network(RNN). RNNs can accept a series of vectors as 
inputs.: 
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In Feed-Forward Neural Networks, the hidden layers’ weights are based only on 
the input data: 
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But, in an RNN, the hidden layer is a combination of the input data at the 
current time-step and the hidden layer at a previous time-step: 
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The hidden layer is constantly changing as it gets more inputs and the only way 
to reach these hidden states is with the correct sequence of inputs. This is how 
memory is incorporated: 
 

 
 
And we can model this process mathematically: 
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Where,    ht = hidden time layer at a given time-step  
      w = weight matrix 
      xt = input at that same time-step 
      ht-1 = hidden state of previous time-step 
      U = own hidden state to hidden state matrix(or, transition matrix) 
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So, this hidden-step at a given time-step is a function of the input at the same 
time-step, modified by a weight-matrix(like the ones used in feed-forward 
networks) , added to the hidden states of the previous time-step, multiplied by 
its own hidden-state to hidden-state matrix(otherwise known as transition 
matrix). 
 
And because this feedback loop is recurrent at every time-step in the series, 
each hidden-state has traces left. Not only of the previous hidden states, but also 
of all of those that preceded it. That’s why we call it recurrent: 
 

 
 
In a way, we think of it as copies of the same network, each passing a message 
to the next: 
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So, that’s the great thing about RNN: they’re able to connect previous data with 
the present task- 
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But we still have a problem: in regular RNNs, memories become more weaken 
as they’re fed into the past: 

 

 
 
, since the error signal from later time-steps doesn’t make far enough back in 
time to influence the network at earlier time-steps during Back-Propagation. 
Yoshua Bengio called it the “Vanishing Gradient Problem”, in one of his 
most cited papers called “Learning Long-Term Dependencies with Gradient 

Descent is Difficult”.   

 
A popular solution to this is Long Short Term Memory(LSTM): 
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Normally, Neurons are units that apply Activation Function, like a Sigmoid, 
to a linear combination of the inputs.  We instead replace these Neurons in an 
LSTM  RNN, which are called Memory Cells: 
 

 
 
So, despite everything else in an RNN staying the same, doing this more 
powerful Update Equation for our Hidden-State results in our network being 
able to remember Long-Term Dependencies: 
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So, for our LSTM layer, we’ll set our input dimension to 1, and say we want 50 
units in this layer. Setting return sequences to True, means this layer’s output is 
always fed to the next layer. We’ll add 20% dropout to this layer: 
 
model.add(LSTM( 

 input_dim = 1, 

 output_dim = 50, 

 return_sequences = True)) 

model.add(Dropout(0.2)) 
 
 
 
We’ll initialize our Second Layer as another LSTM with 100 units and set 
return sequence to False: 
 
model.add(LSTM( 

 100, 

 return_sequences = False)) 

model.add(Dropout(0.2)) 
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We use linear dense layer to aggregate the data from this prediction vector into 
one single value: 
 
model.add(Dense( 

 output_dim = 1)) 

model.add(Activation('linear')) 
 
 
 
Then we can compile our model using a popular loss function called “Mean 

Square Function”: 

 

start = time.time() 

model.compile(loss = 'mse', optimizer = 'rmsprop') 

print('Compilation time: ', time.time() - start) 

 

 
 
 
 
 
 
We’ll  train our model the fit() function: 

 
#Step-3 train the model 

model.fit( 

 X_train, 

 y_train, 

 batch_size = 512, 

 nb_epoch = 1, 

 validation_split = 0.05) 

 

 
Then we can test it to see what it predicts for the next 50 steps: 
 
#Step-4 plot the predictions! 
predictions = lstm.predict_sequences_multiple(model, X_test, 50, 50) 
run.plot_results_multiple(predictions, y_test, 50) 
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Implementation of Kalman Filter Estimation of Mean in Python 

using PyKalman, Bokeh and NSEPy: 

 

Kalman Filter is an optimal estimation algorithm to estimate the variable 
which can be measured indirectly and to find the best estimate of states by 
combining measurement from various sensors in the presence of noise. 
When comes to implementation of Kalman filter python comes very handy as the 
librry PyKalman makes life easier rather than digging with complex math stuff 
to calculate kalman estimation. 
 

 

 

6. Implementation Details: 

 
Decision Tree: 
 
from sklearn import tree 
 
features= [ [177.85, 2987], [175.11, 3088], [177.07, 1081] ] 
 
label= [175.85, 177.85, 176.5] 
 
clf= tree.DecisionTreeClassifier() 
 
clf=clf.fit(features, label) 
 
print (clf.predict([[180, 1587]])) 
 
 

KNN METHODOLOGY: 

 

# Python3 program to find groups of unknown 
# Points using K nearest neighbour algorithm. 
  
import math 
  
def classifyAPoint(points,p,k=3): 
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    ''' 
     This function finds classification of p using 
     k nearest neighbour algorithm. It assumes only two 
     groups and returns 0 if p belongs to group 0, else 
      1 (belongs to group 1). 
  
      Parameters -  
          points : Dictionary of training points having two keys - 0 and 1 
                   Each key have a list of training data points belong to that  
  
          p : A touple ,test data point of form (x,y) 
  
          k : number of nearest neighbour to consider, default is 3  
    ''' 
  
    distance=[] 
    for group in points: 
        for feature in points[group]: 
  
            #calculate the euclidean distance of p from training points  
            euclidean_distance = math.sqrt((feature[0]-p[0])**2 +(feature[1]-
p[1])**2) 
  
            # Add a touple of form (distance,group) in the distance list 
            distance.append((euclidean_distance,group)) 
  
    # sort the distance list in ascending order 
    # and select first k distances 
    distance = sorted(distance)[:k] 
  
    freq1 = 0 #frequency of group 0 
    freq2 = 0 #frequency og group 1 
  
    for d in distance: 
        if d[1] == 0: 
            freq1 += 1 
        elif d[1] == 1: 
            freq2 += 1 
  
    return 0 if freq1>freq2 else 1 
  
# driver function 
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def main(): 
  
    # Dictionary of training points having two keys - 0 and 1 
    # key 0 have points belong to class 0 
    # key 1 have points belong to class 1 
  
    points = {0:[(1,12),(2,5),(3,6),(3,10),(3.5,8),(2,11),(2,9),(1,7)], 
              1:[(5,3),(3,2),(1.5,9),(7,2),(6,1),(3.8,1),(5.6,4),(4,2),(2,5)]} 
  
    # testing point p(x,y) 
    p = (2.5,7) 
  
    # Number of neighbours  
    k = 3 
  
    print("The value classified to unknown point is: {}".\ 
          format(classifyAPoint(points,p,k))) 
  
if __name__ == '__main__': 
    main() 
 

 

 

Support Vector Regression: 

import csv 

import numpy as np 

from sklearn.svm import SVR 

import matplotlib.pyplot as plt 

 

dates = [] 

prices = [] 

print("Hello") 
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def get_data(filename): 

 with open(filename, 'r') as csvfile: 

  csvFileReader = csv.reader(csvfile) 

  next(csvFileReader) 

  for row in csvFileReader: 

   dates.append(int(row[0].split('-')[2])) 

   prices.append(float(row[1])) 

 return 

 

  

def predict_prices(dates, prices, x): 

 dates = np.reshape(dates,(len(dates), 1)) 

 #print(dates) 

 svr_lin = SVR(kernel= 'linear', C=1e3) 

 svr_poly = SVR(kernel= 'poly', C=1e3, degree = 2) 

 svr_rbf = SVR(kernel= 'rbf', C=1e3, gamma=0.1) 

 svr_lin.fit(dates, prices) 

 svr_poly.fit(dates, prices) 

 svr_rbf.fit(dates, prices) 

 plt.scatter(dates, prices, color='black', label='Data') 

 plt.plot(dates, svr_rbf.predict(dates), color='red', label='RBF model') 

 plt.plot(dates, svr_lin.predict(dates), color='green', label='Linear model') 
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 plt.plot(dates, svr_poly.predict(dates), color='blue', label='Polynomial 
model') 

 plt.xlabel('Date') 

 plt.ylabel('Price') 

 plt.title('Support Vector Regression') 

 plt.legend() 

 plt.show() 

 print("Show end") 

 return svr_rbf.predict(x)[0], svr_lin.predict(x)[0], svr_poly.predict(x)[0] 

  

 

get_data('AAPL.csv') 

 

predicted_price = predict_prices(dates, prices, 29) 

print(predicted_price) 

 

 

Deep Learning Model: 

 
from keras.layers.core import Dense, Activation, Dropout 
from keras.layers.recurrent import LSTM 
from keras.models import Sequential 
import lstm, run, time #helper libraries 
 

 

 
#Step-1 Load data 
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X_train, y_train, X_test, y_test = lstm.load_data('sp500.csv', 50, True) 
print(X_train) 
 
#Step-2 Build model 
model = Sequential() 
 
model.add(LSTM( 
 input_dim = 1, 
 output_dim = 50, 
 return_sequences = True)) 
model.add(Dropout(0.2)) 
 
model.add(LSTM( 
 100, 
 return_sequences = False)) 
model.add(Dropout(0.2)) 
 
model.add(Dense( 
 output_dim = 1)) 
model.add(Activation('linear')) 
 
start = time.time() 
model.compile(loss = 'mse', optimizer = 'rmsprop') 
print('Compilation time: ', time.time() - start) 
 
 
#Step-3 train the model 
model.fit( 
 X_train, 
 y_train, 
 batch_size = 512, 
 nb_epoch = 1, 
 validation_split = 0.05) 
    
   
#Step-4 plot the predictions! 
predictions = lstm.predict_sequences_multiple(model, X_test, 50, 50) 
run.plot_results_multiple(predictions, y_test, 50)   
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Reinforcement Learning and Sentiment Analysis(Random Forest 

Model, Linear Regression Model, Multi Layer Perceptron or 

Deep Neural Network Model): 

 
import numpy as np 
import pandas as pd 
from nltk.classify import NaiveBayesClassifier 
from nltk.corpus import subjectivity 
from nltk.sentiment import SentimentAnalyzer 
from nltk.sentiment.util import * 
 
# Reading the saved data pickle file 
df_stocks = pd.read_pickle('/Users/Dinesh/Documents/Project Stock 
predictions/data/pickled_ten_year_filtered_data.pkl') 
 
df_stocks 
 
df_stocks['prices'] = df_stocks['adj close'].apply(np.int64) 
 
# selecting the prices and articles 
df_stocks = df_stocks[['prices', 'articles']] 
 
df_stocks['articles'] = df_stocks['articles'].map(lambda x: x.lstrip('.-')) 
df_stocks 
 
df = df_stocks[['prices']].copy() 
df 
 
# Adding new columns to the data frame 
df["compound"] = '' 
df["neg"] = '' 
df["neu"] = '' 
df["pos"] = '' 
 
df 
 
from nltk.sentiment.vader import SentimentIntensityAnalyzer 
import unicodedata 
sid = SentimentIntensityAnalyzer() 
for date, row in df_stocks.T.iteritems(): 
    try: 
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        sentence = unicodedata.normalize('NFKD', df_stocks.loc[date, 
'articles']).encode('ascii','ignore') 
        ss = sid.polarity_scores(sentence) 
        df.set_value(date, 'compound', ss['compound']) 
        df.set_value(date, 'neg', ss['neg']) 
        df.set_value(date, 'neu', ss['neu']) 
        df.set_value(date, 'pos', ss['pos']) 
    except TypeError: 
        print df_stocks.loc[date, 'articles'] 
        print date 
 
df 
 
train_start_date = '2007-01-01' 
train_end_date = '2014-12-31' 
test_start_date = '2015-01-01' 
test_end_date = '2016-12-31' 
train = df.ix[train_start_date : train_end_date] 
test = df.ix[test_start_date:test_end_date] 
 
sentiment_score_list = [] 
for date, row in train.T.iteritems(): 
    #sentiment_score = np.asarray([df.loc[date, 'compound'],df.loc[date, 
'neg'],df.loc[date, 'neu'],df.loc[date, 'pos']]) 
    sentiment_score = np.asarray([df.loc[date, 'neg'],df.loc[date, 'pos']]) 
    sentiment_score_list.append(sentiment_score) 
numpy_df_train = np.asarray(sentiment_score_list) 
sentiment_score_list = [] 
for date, row in test.T.iteritems(): 
    #sentiment_score = np.asarray([df.loc[date, 'compound'],df.loc[date, 
'neg'],df.loc[date, 'neu'],df.loc[date, 'pos']]) 
    sentiment_score = np.asarray([df.loc[date, 'neg'],df.loc[date, 'pos']]) 
    sentiment_score_list.append(sentiment_score) 
numpy_df_test = np.asarray(sentiment_score_list) 
 
y_train = pd.DataFrame(train['prices']) 
y_test = pd.DataFrame(test['prices']) 
 
from treeinterpreter import treeinterpreter as ti 
from sklearn.tree import DecisionTreeRegressor 
from sklearn.ensemble import RandomForestRegressor 
from sklearn.metrics import classification_report,confusion_matrix 
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rf = RandomForestRegressor() 
rf.fit(numpy_df_train, y_train) 
 
print rf.feature_importances_ 
 
prediction, bias, contributions = ti.predict(rf, numpy_df_test) 
 
prediction 
 
contributions 
 
import matplotlib.pyplot as plt 
%matplotlib inline 
 
idx = pd.date_range(test_start_date, test_end_date) 
predictions_df = pd.DataFrame(data=prediction[0:], index = idx, 
columns=['prices']) 
 
predictions_df 
 
#predictions_df.plot()  
#test['prices'].plot() 
 
predictions_plot = predictions_df.plot() 
 
fig = y_test.plot(ax = predictions_plot).get_figure() 
fig.savefig("graphs/random forest without smoothing.png") 
 
ax = predictions_df.rename(columns={"prices": 
"predicted_price"}).plot(title='Random Forest predicted prices 8-2 years') 
ax.set_xlabel("Dates") 
ax.set_ylabel("Stock Prices") 
fig = y_test.rename(columns={"prices": "actual_price"}).plot(ax = 
ax).get_figure() 
fig.savefig("graphs/random forest without smoothing.png") 
 
# colors = ['332288', '88CCEE', '44AA99', '117733', '999933', 'DDCC77', 
'CC6677', '882255', 'AA4499'] 
 
test 
 



 
Theory of Estimation 
            using  
Artificial Intelligence     Mr. Jaydip Mukhopadhyay Grp. No.:-7 

103  

 

from datetime import datetime, timedelta 
 
temp_date = test_start_date 
average_last_5_days_test = 0 
total_days = 10 
for i in range(total_days): 
    average_last_5_days_test += test.loc[temp_date, 'prices'] 
    # Converting string to date time 
    temp_date = datetime.strptime(temp_date, "%Y-%m-%d").date() 
    # Reducing one day from date time 
    difference = temp_date + timedelta(days=1) 
    # Converting again date time to string 
    temp_date = difference.strftime('%Y-%m-%d') 
    #print temp_date 
average_last_5_days_test = average_last_5_days_test / total_days 
print average_last_5_days_test 
 
temp_date = test_start_date 
average_upcoming_5_days_predicted = 0 
for i in range(total_days): 
    average_upcoming_5_days_predicted += predictions_df.loc[temp_date, 
'prices'] 
    # Converting string to date time 
    temp_date = datetime.strptime(temp_date, "%Y-%m-%d").date() 
    # Adding one day from date time 
    difference = temp_date + timedelta(days=1) 
    # Converting again date time to string 
    temp_date = difference.strftime('%Y-%m-%d') 
    print temp_date 
average_upcoming_5_days_predicted = average_upcoming_5_days_predicted / 
total_days 
print average_upcoming_5_days_predicted 
#average train.loc['2013-12-31', 'prices'] - advpredictions_df.loc['2014-01-01', 
'prices'] 
difference_test_predicted_prices = average_last_5_days_test - 
average_upcoming_5_days_predicted 
print difference_test_predicted_prices 
 
from datetime import datetime, timedelta 
 
temp_date = test_start_date 
average_last_5_days_test = 0 
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total_days = 10 
for i in range(total_days): 
    average_last_5_days_test += test.loc[temp_date, 'prices'] 
    # Converting string to date time 
    temp_date = datetime.strptime(temp_date, "%Y-%m-%d").date() 
    # Reducing one day from date time 
    difference = temp_date + timedelta(days=1) 
    # Converting again date time to string 
    temp_date = difference.strftime('%Y-%m-%d') 
    #print temp_date 
average_last_5_days_test = average_last_5_days_test / total_days 
print average_last_5_days_test 
 
temp_date = test_start_date 
average_upcoming_5_days_predicted = 0 
for i in range(total_days): 
    average_upcoming_5_days_predicted += predictions_df.loc[temp_date, 
'prices'] 
    # Converting string to date time 
    temp_date = datetime.strptime(temp_date, "%Y-%m-%d").date() 
    # Adding one day from date time 
    difference = temp_date + timedelta(days=1) 
    # Converting again date time to string 
    temp_date = difference.strftime('%Y-%m-%d') 
    print temp_date 
average_upcoming_5_days_predicted = average_upcoming_5_days_predicted / 
total_days 
print average_upcoming_5_days_predicted 
#average train.loc['2013-12-31', 'prices'] - advpredictions_df.loc['2014-01-01', 
'prices'] 
difference_test_predicted_prices = average_last_5_days_test - 
average_upcoming_5_days_predicted 
print difference_test_predicted_prices 
 
# Adding 6177 to all the advpredictions_df price values 
predictions_df['prices'] = predictions_df['prices'] + 
difference_test_predicted_prices 
predictions_df 
 
ax = predictions_df.rename(columns={"prices": 
"predicted_price"}).plot(title='Random Forest predicted prices 8-2 years after 
aligning') 
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ax.set_xlabel("Dates") 
ax.set_ylabel("Stock Prices") 
fig = y_test.rename(columns={"prices": "actual_price"}).plot(ax = 
ax).get_figure() 
fig.savefig("graphs/random forest with aligning.png") 
 
predictions_df 
 
predictions_df['ewma'] = pd.ewma(predictions_df["prices"], span=60, 
freq="D") 
 
predictions_df 
 
 predictions_df['actual_value'] = test['prices'] 
predictions_df['actual_value_ewma'] = 
pd.ewma(predictions_df["actual_value"], span=60, freq="D") 
 
predictions_df 
 
# Changing column names 
predictions_df.columns = ['predicted_price', 'average_predicted_price', 
'actual_price', 'average_actual_price'] 
 
# Now plotting test predictions after smoothing 
predictions_plot = predictions_df.plot(title='Random Forest predicted prices 8-2 
years after aligning & smoothing') 
predictions_plot.set_xlabel("Dates") 
predictions_plot.set_ylabel("Stock Prices") 
fig = predictions_plot.get_figure() 
fig.savefig("graphs/random forest after smoothing.png") 
 
# Plotting just predict and actual average curves 
predictions_df_average = predictions_df[['average_predicted_price', 
'average_actual_price']] 
predictions_plot = predictions_df_average.plot(title='Random Forest 8-2 years 
after aligning & smoothing') 
predictions_plot.set_xlabel("Dates") 
predictions_plot.set_ylabel("Stock Prices") 
fig = predictions_plot.get_figure() 
fig.savefig("graphs/random forest after smoothing 2.png") 
 
def offset_value(test_start_date, test, predictions_df): 
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    temp_date = test_start_date 
    average_last_5_days_test = 0 
    average_upcoming_5_days_predicted = 0 
    total_days = 10 
    for i in range(total_days): 
        average_last_5_days_test += test.loc[temp_date, 'prices'] 
        temp_date = datetime.strptime(temp_date, "%Y-%m-%d").date() 
        difference = temp_date + timedelta(days=1) 
        temp_date = difference.strftime('%Y-%m-%d') 
    average_last_5_days_test = average_last_5_days_test / total_days 
 
    temp_date = test_start_date 
    for i in range(total_days): 
        average_upcoming_5_days_predicted += predictions_df.loc[temp_date, 
'prices'] 
        temp_date = datetime.strptime(temp_date, "%Y-%m-%d").date() 
        difference = temp_date + timedelta(days=1) 
        temp_date = difference.strftime('%Y-%m-%d') 
    average_upcoming_5_days_predicted = 
average_upcoming_5_days_predicted / total_days 
    difference_test_predicted_prices = average_last_5_days_test - 
average_upcoming_5_days_predicted 
    return difference_test_predicted_prices 
 
from treeinterpreter import treeinterpreter as ti 
from sklearn.tree import DecisionTreeRegressor 
from sklearn.ensemble import RandomForestRegressor 
from sklearn.linear_model import LogisticRegression 
from datetime import datetime, timedelta 
 
# average_upcoming_5_days_predicted += predictions_df.loc[temp_date, 
'prices'] 
# # Converting string to date time 
# temp_date = datetime.strptime(temp_date, "%Y-%m-%d").date() 
# # Adding one day from date time 
# difference = temp_date + timedelta(days=1) 
# # Converting again date time to string 
# temp_date = difference.strftime('%Y-%m-%d') 
         
# start_year = datetime.strptime(train_start_date, "%Y-%m-%d").date().month 
 
years = [2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016] 
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prediction_list = [] 
for year in years: 
    # Splitting the training and testing data 
    train_start_date = str(year) + '-01-01' 
    train_end_date = str(year) + '-10-31' 
    test_start_date = str(year) + '-11-01' 
    test_end_date = str(year) + '-12-31' 
    train = df.ix[train_start_date : train_end_date] 
    test = df.ix[test_start_date:test_end_date] 
     
    # Calculating the sentiment score 
    sentiment_score_list = [] 
    for date, row in train.T.iteritems(): 
        sentiment_score = np.asarray([df.loc[date, 'compound'],df.loc[date, 
'neg'],df.loc[date, 'neu'],df.loc[date, 'pos']]) 
        #sentiment_score = np.asarray([df.loc[date, 'neg'],df.loc[date, 'pos']]) 
        sentiment_score_list.append(sentiment_score) 
    numpy_df_train = np.asarray(sentiment_score_list) 
    sentiment_score_list = [] 
    for date, row in test.T.iteritems(): 
        sentiment_score = np.asarray([df.loc[date, 'compound'],df.loc[date, 
'neg'],df.loc[date, 'neu'],df.loc[date, 'pos']]) 
        #sentiment_score = np.asarray([df.loc[date, 'neg'],df.loc[date, 'pos']]) 
        sentiment_score_list.append(sentiment_score) 
    numpy_df_test = np.asarray(sentiment_score_list) 
     
    # Generating models 
    lr = LogisticRegression() 
    lr.fit(numpy_df_train, train['prices']) 
     
 
    prediction = lr.predict(numpy_df_test) 
    prediction_list.append(prediction) 
    #print train_start_date + ' ' + train_end_date + ' ' + test_start_date + ' ' + 
test_end_date 
    idx = pd.date_range(test_start_date, test_end_date) 
    #print year 
    predictions_df_list = pd.DataFrame(data=prediction[0:], index = idx, 
columns=['prices']) 
     
    difference_test_predicted_prices = offset_value(test_start_date, test, 
predictions_df_list) 
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    # Adding offset to all the advpredictions_df price values 
    predictions_df_list['prices'] = predictions_df_list['prices'] + 
difference_test_predicted_prices 
    predictions_df_list 
 
    # Smoothing the plot 
    predictions_df_list['ewma'] = pd.ewma(predictions_df_list["prices"], 
span=10, freq="D") 
    predictions_df_list['actual_value'] = test['prices'] 
    predictions_df_list['actual_value_ewma'] = 
pd.ewma(predictions_df_list["actual_value"], span=10, freq="D") 
    # Changing column names 
    predictions_df_list.columns = ['predicted_price', 'average_predicted_price', 
'actual_price', 'average_actual_price'] 
    predictions_df_list.plot() 
    predictions_df_list_average = predictions_df_list[['average_predicted_price', 
'average_actual_price']] 
    predictions_df_list_average.plot() 
     
#     predictions_df_list.show() 
     
lr.classes_ 
 
lr.coef_[0] 
 
from treeinterpreter import treeinterpreter as ti 
from sklearn.tree import DecisionTreeRegressor 
from sklearn.ensemble import RandomForestRegressor 
from sklearn.linear_model import LogisticRegression 
from datetime import datetime, timedelta 
 
# average_upcoming_5_days_predicted += predictions_df.loc[temp_date, 
'prices'] 
# # Converting string to date time 
# temp_date = datetime.strptime(temp_date, "%Y-%m-%d").date() 
# # Adding one day from date time 
# difference = temp_date + timedelta(days=1) 
# # Converting again date time to string 
# temp_date = difference.strftime('%Y-%m-%d') 
         
# start_year = datetime.strptime(train_start_date, "%Y-%m-%d").date().month 
 



 
Theory of Estimation 
            using  
Artificial Intelligence     Mr. Jaydip Mukhopadhyay Grp. No.:-7 

109  

 

years = [2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016] 
prediction_list = [] 
for year in years: 
    # Splitting the training and testing data 
    train_start_date = str(year) + '-01-01' 
    train_end_date = str(year) + '-10-31' 
    test_start_date = str(year) + '-11-01' 
    test_end_date = str(year) + '-12-31' 
    train = df.ix[train_start_date : train_end_date] 
    test = df.ix[test_start_date:test_end_date] 
     
    # Calculating the sentiment score 
    sentiment_score_list = [] 
    for date, row in train.T.iteritems(): 
        sentiment_score = np.asarray([df.loc[date, 'compound'],df.loc[date, 
'neg'],df.loc[date, 'neu'],df.loc[date, 'pos']]) 
        #sentiment_score = np.asarray([df.loc[date, 'neg'],df.loc[date, 'pos']]) 
        sentiment_score_list.append(sentiment_score) 
    numpy_df_train = np.asarray(sentiment_score_list) 
    sentiment_score_list = [] 
    for date, row in test.T.iteritems(): 
        sentiment_score = np.asarray([df.loc[date, 'compound'],df.loc[date, 
'neg'],df.loc[date, 'neu'],df.loc[date, 'pos']]) 
        #sentiment_score = np.asarray([df.loc[date, 'neg'],df.loc[date, 'pos']]) 
        sentiment_score_list.append(sentiment_score) 
    numpy_df_test = np.asarray(sentiment_score_list) 
     
    # Generating models 
    rf = RandomForestRegressor(random_state=) 
    rf.fit(numpy_df_train, train['prices']) 
    #print rf 
     
    prediction, bias, contributions = ti.predict(rf, numpy_df_test) 
    prediction_list.append(prediction) 
    #print train_start_date + ' ' + train_end_date + ' ' + test_start_date + ' ' + 
test_end_date 
    idx = pd.date_range(test_start_date, test_end_date) 
    #print year 
    predictions_df_list = pd.DataFrame(data=prediction[0:], index = idx, 
columns=['prices']) 
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    difference_test_predicted_prices = offset_value(test_start_date, test, 
predictions_df_list) 
    # Adding offset to all the advpredictions_df price values 
    predictions_df_list['prices'] = predictions_df_list['prices'] + 
difference_test_predicted_prices 
    predictions_df_list 
 
    # Smoothing the plot 
    predictions_df_list['ewma'] = pd.ewma(predictions_df_list["prices"], 
span=10, freq="D") 
    predictions_df_list['actual_value'] = test['prices'] 
    predictions_df_list['actual_value_ewma'] = 
pd.ewma(predictions_df_list["actual_value"], span=10, freq="D") 
    # Changing column names 
    predictions_df_list.columns = ['predicted_price', 'average_predicted_price', 
'actual_price', 'average_actual_price'] 
    predictions_df_list.plot() 
    predictions_df_list_average = predictions_df_list[['average_predicted_price', 
'average_actual_price']] 
    predictions_df_list_average.plot() 
     
#     predictions_df_list.show() 
     
from sklearn.neural_network import MLPClassifier 
from datetime import datetime, timedelta 
 
# average_upcoming_5_days_predicted += predictions_df.loc[temp_date, 
'prices'] 
# # Converting string to date time 
# temp_date = datetime.strptime(temp_date, "%Y-%m-%d").date() 
# # Adding one day from date time 
# difference = temp_date + timedelta(days=1) 
# # Converting again date time to string 
# temp_date = difference.strftime('%Y-%m-%d') 
         
# start_year = datetime.strptime(train_start_date, "%Y-%m-%d").date().month 
 
years = [2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016] 
prediction_list = [] 
for year in years: 
    # Splitting the training and testing data 
    train_start_date = str(year) + '-01-01' 
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    train_end_date = str(year) + '-10-31' 
    test_start_date = str(year) + '-11-01' 
    test_end_date = str(year) + '-12-31' 
    train = df.ix[train_start_date : train_end_date] 
    test = df.ix[test_start_date:test_end_date] 
     
    # Calculating the sentiment score 
    sentiment_score_list = [] 
    for date, row in train.T.iteritems(): 
        sentiment_score = np.asarray([df.loc[date, 'compound'],df.loc[date, 
'neg'],df.loc[date, 'neu'],df.loc[date, 'pos']]) 
        #sentiment_score = np.asarray([df.loc[date, 'neg'],df.loc[date, 'pos']]) 
        sentiment_score_list.append(sentiment_score) 
    numpy_df_train = np.asarray(sentiment_score_list) 
    sentiment_score_list = [] 
    for date, row in test.T.iteritems(): 
        sentiment_score = np.asarray([df.loc[date, 'compound'],df.loc[date, 
'neg'],df.loc[date, 'neu'],df.loc[date, 'pos']]) 
        #sentiment_score = np.asarray([df.loc[date, 'neg'],df.loc[date, 'pos']]) 
        sentiment_score_list.append(sentiment_score) 
    numpy_df_test = np.asarray(sentiment_score_list) 
     
    # Generating models 
    mlpc = MLPClassifier(hidden_layer_sizes=(100, 200, 100), activation='relu',  
                         solver='lbfgs', alpha=0.005, learning_rate_init = 0.001, 
shuffle=False) # span = 20 # best 1 
    mlpc.fit(numpy_df_train, train['prices'])    
    prediction = mlpc.predict(numpy_df_test) 
     
    prediction_list.append(prediction) 
    #print train_start_date + ' ' + train_end_date + ' ' + test_start_date + ' ' + 
test_end_date 
    idx = pd.date_range(test_start_date, test_end_date) 
    #print year 
    predictions_df_list = pd.DataFrame(data=prediction[0:], index = idx, 
columns=['prices']) 
     
    difference_test_predicted_prices = offset_value(test_start_date, test, 
predictions_df_list) 
    # Adding offset to all the advpredictions_df price values 
    predictions_df_list['prices'] = predictions_df_list['prices'] + 
difference_test_predicted_prices 
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    predictions_df_list 
 
    # Smoothing the plot 
    predictions_df_list['ewma'] = pd.ewma(predictions_df_list["prices"], 
span=20, freq="D") 
    predictions_df_list['actual_value'] = test['prices'] 
    predictions_df_list['actual_value_ewma'] = 
pd.ewma(predictions_df_list["actual_value"], span=20, freq="D") 
    # Changing column names 
    predictions_df_list.columns = ['predicted_price', 'average_predicted_price', 
'actual_price', 'average_actual_price'] 
    predictions_df_list.plot() 
    predictions_df_list_average = predictions_df_list[['average_predicted_price', 
'average_actual_price']] 
    predictions_df_list_average.plot() 
     
#     predictions_df_list.show() 
     
mlpc = MLPClassifier(hidden_layer_sizes=(100, 200, 100), activation='tanh',  
                         solver='lbfgs', alpha=0.010, learning_rate_init = 0.001, 
shuffle=False) 
mlpc = MLPClassifier(hidden_layer_sizes=(100, 200, 100), activation='relu',  
                         solver='lbfgs', alpha=0.010, learning_rate_init = 0.001, 
shuffle=False) # span = 20 
mlpc = MLPClassifier(hidden_layer_sizes=(100, 200, 100), activation='relu',  
                         solver='lbfgs', alpha=0.005, learning_rate_init = 0.001, 
shuffle=False) # span = 20 # best 1 
mlpc = MLPClassifier(hidden_layer_sizes=(100, 200, 50), activation='relu',  
                         solver='lbfgs', alpha=0.005, learning_rate_init = 0.001, 
shuffle=False 
                      
# checking the performance of training data itself 
prediction, bias, contributions = ti.predict(rf, numpy_df_train) 
idx = pd.date_range(train_start_date, train_end_date) 
predictions_df1 = pd.DataFrame(data=prediction[0:], index = idx, 
columns=['prices']) 
predictions_df1.plot()  
train['prices'].plot() 
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Implementation of Kalman Filter Estimation of Mean in Python 

using PyKalman, Bokeh and NSEPy: 

 

from math import pi 
import pandas as pd 
from bokeh.plotting import figure, show, output_notebook 
from nsepy.archives import get_price_history 
from datetime import date 
from datetime import datetime 
from pykalman import KalmanFilter 
 
%matplotlib notebook 
 
df = get_price_history(stock = 'TCS',  
                        start = date(2015,1,1),  
                        end = date(2017,04,19)) 
kf = KalmanFilter(transition_matrices = [1], 
                  observation_matrices = [1], 
                  initial_state_mean = df['Close'].values[0], 
                  initial_state_covariance = 1, 
                  observation_covariance=1, 
                  transition_covariance=.01) 
state_means,_ = kf.filter(df[['Close']].values) 
state_means = state_means.flatten() 
df["date"] = pd.to_datetime(df.index) 
 
mids = (df.Open + df.Close)/2 
spans = abs(df.Close-df.Open) 
 
inc = df.Close > df.Open 
dec = df.Open > df.Close 
w = 12*60*60*1000 # half day in ms 
 
output_notebook() 
 
TOOLS = "pan,wheel_zoom,box_zoom,reset,save" 
 
p = figure(x_axis_type="datetime", tools=TOOLS, plot_width=1000, toolbar_lo
cation="left",y_axis_label = "Price", 
          x_axis_label = "Date") 
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p.segment(df.date, df.High, df.date, df.Low, color="black") 
p.rect(df.date[inc], mids[inc], w, spans[inc], fill_color='green', line_color="gree
n") 
p.rect(df.date[dec], mids[dec], w, spans[dec], fill_color='red', line_color="red") 
p.line(df.date,state_means,line_width=1,line_color = 'blue',legend="Kalman filt
er") 
 
p.title = "Implementation of Kalman Filter Estimation - TCS EOD chart" 
p.xaxis.major_label_orientation = pi/4 
p.grid.grid_line_alpha=0.3 
show(p) 

 

 

 

7. Results/Sample Output: 
 

Decision Tree: 

 
We are getting wrong output. 
 
 
 

KNN  Methodology: 
 
The value classified to unknown point is: 0 
 
 

 

 

 

 

 

 

 

Support Vector Regression: 
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Deep Learning Model: 

[[[ 0.        ] 

  [ 0.00305228] 

  [-0.00033845] 

  ... 

  [ 0.06331986] 

  [ 0.06780923] 

  [ 0.06386026]] 

 

 [[ 0.        ] 

  [ 0.00811193] 

  [ 0.02051003] 

  ... 

  [ 0.01546984] 

  [ 0.01262037] 

  [ 0.00921522]] 

 

 [[ 0.        ] 

  [ 0.00232927] 

  [ 0.00744792] 

  ... 

…… 
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Reinforcement Learning and Sentiment Analysis(Random Forest 

Model, Linear Regression Model, Multi Layer Perceptron or 

Deep Neural Network Model): 

 

 
2007-01-01 

12469.971875 12469.971875 . What Sticks from '06. Somalia Orders Islamis... 

2007-01-02 12472.245703 12472.245703 . Heart Health: Vitamin Does Not Prevent Death... 

2007-01-03 12474.519531 12474.519531 . Google Answer to Filling Jobs Is an Algorith... 

2007-01-04 12480.690430 12480.690430 . Helping Make the Shift From Combat to Commer... 

2007-01-05 12398.009766 12398.009766 . Rise in Ethanol Raises Concerns About Corn a... 

2007-01-06 12406.503255 12406.503255 . A Status Quo Secretary General. Best Buy and... 

2007-01-07 12414.996745 12414.996745 . THE COMMON APPLICATION; Typo.com. Jumbo Bonu... 

2007-01-08 12423.490234 12423.490234 . VW Group’s Sales Rose Sharply in 2006. Conso... 

2007-01-09 12416.599609 12416.599609 . The Claim: Hot Leftovers Should Cool at Roo... 

2007-01-10 12442.160156 12442.160156 . Love Among the Ruins. Dell Says Plant a Tree... 

2007-01-11 12514.980469 12514.980469 . The Computer With a TV, and a Family's Virtu... 

2007-01-12 12556.080078 12556.080078 . Make Them Fight All of Us. Hire by the Contr... 
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2007-01-13 12562.707519 12562.707519 . Blair Urges Britain to Pursue an Aggressive ... 

2007-01-14 12569.334961 12569.334961 . Smoke Damage. Mr. Spitzer’s Task on Court Re... 

2007-01-15 12575.962403 12575.962403 . The Mentally Ill, Behind Bars. BP’s Chief to... 

2007-01-16 12582.589844 12582.589844 . King Day in Atlanta, ‘the One Without Mrs. K... 

2007-01-17 12577.150391 12577.150391 . Racial Hate Feeds a Gang War’s Senseless Kil... 

……………………. 
 

prices articles 

2007-01-01 12469 What Sticks from '06. Somalia Orders Islamist... 

2007-01-02 12472 Heart Health: Vitamin Does Not Prevent Death ... 

2007-01-03 12474 Google Answer to Filling Jobs Is an Algorithm... 

2007-01-04 12480 Helping Make the Shift From Combat to Commerc... 

2007-01-05 12398 Rise in Ethanol Raises Concerns About Corn as... 

2007-01-06 12406 A Status Quo Secretary General. Best Buy and ... 

2007-01-07 12414 THE COMMON APPLICATION; Typo.com. Jumbo Bonus... 

2007-01-08 12423 VW Group’s Sales Rose Sharply in 2006. Consol... 

2007-01-09 12416 The Claim: Hot Leftovers Should Cool at Room... 

2007-01-10 12442 Love Among the Ruins. Dell Says Plant a Tree,... 

2007-01-11 12514 The Computer With a TV, and a Family's Virtua... 

2007-01-12 12556 Make Them Fight All of Us. Hire by the Contra... 

2007-01-13 12562 Blair Urges Britain to Pursue an Aggressive F... 

2007-01-14 12569 Smoke Damage. Mr. Spitzer’s Task on Court Ref... 

2007-01-15 12575 The Mentally Ill, Behind Bars. BP’s Chief to ... 

2007-01-16 12582 King Day in Atlanta, ‘the One Without Mrs. Ki... 

2007-01-17 12577 Racial Hate Feeds a Gang War’s Senseless Kill... 

2007-01-18 12567 Taliban Detainee Says Rebel Chief Hides in Pa... 

2007-01-19 12565 Data Breach Could Affect Millions of TJX Shop... 

2007-01-20 12536 Archives of Spin. H.P. Chief Defends Timing o... 

2007-01-21 12506 Connecticut’s Diaspora. Son of Dogs Playing P 

…………… 
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2007-01-01 

12469 

2007-01-02 12472 

2007-01-03 12474 

2007-01-04 12480 

2007-01-05 12398 

2007-01-06 12406 

2007-01-07 12414 

2007-01-08 12423 

2007-01-09 12416 

2007-01-10 12442 

………… 
 

prices compound neg neu pos 

2007-01-01 12469 
    

2007-01-02 12472 
    

2007-01-03 12474 
    

2007-01-04 12480 
    

2007-01-05 12398 
    

2007-01-06 12406 
    

2007-01-07 12414 
    

2007-01-08 12423 
    

2007-01-09 12416 
    

2007-01-10 12442 
    

2007-01-11 12514 
    

2007-01-12 12556 
    ………….. 

 

prices compound neg neu pos 

2007-01-01 12469 -0.9735 0.153 0.748 0.099 

2007-01-02 12472 -0.9664 0.122 0.784 0.095 
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prices compound neg neu pos 

2007-01-03 12474 -0.9994 0.207 0.733 0.06 

2007-01-04 12480 -0.9982 0.131 0.806 0.062 

2007-01-05 12398 -0.9901 0.124 0.794 0.082 

2007-01-06 12406 -0.965 0.134 0.771 0.094 

2007-01-07 12414 -0.9975 0.193 0.739 0.069 

2007-01-08 12423 -0.973 0.114 0.788 0.098 

2007-01-09 12416 -0.9945 0.104 0.844 0.052 

2007-01-10 12442 -0.9863 0.141 0.742 0.117 

2007-01-11 12514 -0.9981 0.131 0.81 0.059 

……….. 
 

array([ 13641.5       ,  13461.6       ,  15840.38333333,  13780.      

  , 

        10800.1       ,  13148.4       ,   9041.4       ,  14952.4     

  , 

        12361.9       ,  14916.2       ,  14543.1       ,  11104.113333

33, 

        11381.55      ,  12849.13333333,  10697.54      ,  13305.55    

  , 

        10913.8       ,   9965.16666667,  13685.6       ,  12008.65    

  , 

        11371.34      ,  13397.6       ,  12677.125     ,  12108.3     

  , 

        14366.7       ,  12970.8       ,  10861.9       ,  12791.6     

  , 

        11023.92      ,  13064.2       ,   9194.7       ,  14356.6     

  , 

        12995.8       ,  13851.2       ,  11510.25      ,  14062.3     

  , 

        12786.23333333,  12650.        ,  13515.8       ,  14025.      

  , 

        11637.85      ,  12327.86666667,  15235.7       ,  13036.4     

  , 

        13642.        ,  12938.1       ,  12299.05      ,  12517.4     

  , 

        13859.17857143,  12800.6       ,  14177.87      ,  14851.2     

  , 

        10956.8       ,  12583.35      ,  14543.80833333,  13524.      

  , 

        14326.        ,  12712.7       ,  12912.63333333,  15375.      

  , 

        10239.1       ,  11562.6       ,  13225.81666667,  11772.8     

  , 

        13399.9       ,  14459.4       ,  13572.3       ,  15218.4     

  , 
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        13196.5       ,  12623.83333333,  13181.8       ,  14188.4     

  , 

        12084.2       ,  10620.3       ,  12294.43333333,  14259.6     

  , 

….. 
 

prices 

2015-01-01 13641.500000 

2015-01-02 13461.600000 

2015-01-03 15840.383333 

2015-01-04 13780.000000 

2015-01-05 10800.100000 

2015-01-06 13148.400000 

2015-01-07 9041.400000 

2015-01-08 14952.400000 

2015-01-09 12361.900000 

2015-01-10 14916.200000 

2015-01-11 14543.100000 

……………… 
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Implementation of Kalman Filter Estimation of Mean in Python  

using PyKalman, Bokeh and NSEPy: 
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8.Conclusion: 

 
We have implemented many a algorithms in our  search for the optimal one. 
Wehave found the following two among them to give us better results: 
 

1. SVR RBF Model 
2. MLP Model 

 
Our research is still going on and now we are trying to implement a suitable 
algorithm for Kalman Filtering so that we can fine-tune our results to some 
more extent.  
 
Till now, we have faced both success and failure. But that is a part of research. 
We have found ways in which it would work as well as ways in which won’t 
work. 
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Appendix: 
 
Kindly refer to the  “6. Implementation Details”  section. 
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