

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

1

 THEORY OF ESTIMATION

 USING
 ARTIFICIAL INTELLIGENCE

 By

 Surajit Das

 Auropriya Sinha

 Sana Khan Bano

 Kaustav Biswas

 UNDER THE GUIDANCE OF

 Mr. Jaydip Mukhopadhyay

 PROJECT REPORT SUBMITTED IN PARTIAL FULFILLMENT OF

 THE REQUIREMENTS FOR THE DEGREE OF

 BACHELOR OF TECHNOLOGY IN COMPUTER SCIENCE AND

ENGINEERING

 RCC INSTITUTE OF INFORMATION TECHNOLOGY

 Session 2018-2019

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

RCC INSTITUTE OF INFORMATION TECHNOLOGY

 [Affiliated to MAKAUT, West Bengal]
CANAL SOUTH ROAD, BELIAGHATA, KOLKATA-700015

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

2

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
RCC INSTITUTE OF INFORMATION TECHNOLOGY

TO WHOM IT MAY CONCERN

I hereby recommend that the Project entitled Theory of Estimation using
Artificial Intelligence prepared under my supervision by Surajit Das,
Auropriya Sinha, Sana Khan Bano & Kaustav Biswas bearing (Reg
no.s 141170110084, 141170110021, 141170110057, 141170110035 & R
No.s 11700114084, 11700114021, 11700114057, 11700114035 & Class
Roll No.s CSE2014/004, CSE2014/020, CSE2014/024, CSE2014/032
respectively of B.Tech (7

th
 /8

th
 Semester), may be accepted in partial

fulfillment for the degree of Bachelor of Technology in Computer
Science & Engineering under MAKAUT, West Bengal.

.

…………………………………………
Project Supervisor

Department of Computer Science and Engineering

RCC Institute of Information Technology

Countersigned:

………………………………………
Head
Department of Computer Sc. & Engg,
RCC Institute of Information Technology

Kolkata – 700015.

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

3

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

RCC INSTITUTE OF INFORMATION TECHNOLOGY

CERTIFICATE OF APPROVAL

The foregoing Project is hereby accepted as a credible study of an engineering

subject carried out and presented in a manner satisfactory to warrant its acceptance as

a prerequisite to the degree for which it has been submitted. It is understood that by

this approval the undersigned do not necessarily endorse or approve any statement

made, opinion expressed or conclusion drawn therein, but approve the project only for

the purpose for which it is submitted.

FINAL EXAMINATION FOR
EVALUATION OF PROJECT

1. —————————————

2. ———————————

(Signature of Examiners)

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

4

ACKNOWLEDGEMENT

We, take this opportunity to express our profound gratitude and deep regards to our guide
Mr. Jaydip Mukhopadhyay for his exemplary guidance , monitoring and constant
encouragement throughout the course of this project . The blessing , help and guidance
given by him time to time will carry us a long way in the journey of life on which we are
about to embark.

 We are obliged to each other as team members for the valuable information
provided by each of us in our respective fields. We are grateful for each other’s co-
operation during the period of our assignment.

————————————

 Surajit Das (CSE2014/004)

 Auropriya Sinha (CSE2014/020)

 Sana Khan Bano (CSE2014/024)

 Kaustav Biswas (CSE2014/032)

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

5

Table of Contents

Page No.

1. Introduction ……………………………………………………. 6 - 9

2. Review of Literature …………………………………………… 10 - 54

3. Objective of the Project………………………………………… 54 - 55

4. System Design…………………………………………………… 55 - 56

5. Methodology for implementation (Formulation/Algorithm)…… 56 - 91

6. Implementation Details…………………………………………. 91 - 110

7. Results/Sample output………………………………………….. 110 - 118

8. Conclusion………………………………………………………. 118

Appendix-: Program Source code with adequate comments………… 119

References …... 119 - 120

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

6

1. Introduction:

The domain of application of our project is STOCK MARKET PRICE
PREDICTION. The STOCK MARKET allows us to buy and sell units of
ownerships in a company, which we call STOCKS. If the company profits go up,
we own some of those profits. If they go down, we lose profits with them.
STOCK market price prediction is a very complex and challenging research area
where different methods have been developed to predict stock price movement in
the market.

So, if we were to buy stocks in the right company and at the right time, we could
become rich overnight. Is there something we could do to predict future stock
prices, given a data set of past prices?

This sounds like a Data Science problem. But according to the “Efficient Market

Hypothesis”, the Stock Market is random and unpredictable. But major financial
firms like J.P. Morgan, Goldman Sachs, Citi Group have been hiring Quantitative
Traders for years to build Predictive Models on Past Market Data.
Let’s think about the process of creating investment strategy: once we’ve decided
that we do want to make an investment, we need to figure out which companies out
there are most likely going to give us big returns. Generally, we start by doing
some research on the company’s history, use the past news articles and how the
company has fared over the years. We would look how stock prices have changed
over time, may observe what others are saying about the future of the company on
Twitter, and finally, we would collect all of these data that we’ve gathered in our
head, to make a prediction about our future price.

That’s the prefect use case for Machine Learning, learning from past data points, to
predict future ones. In a very recent paper from “Auburn”, on this topic, a small
group concluded that using data from several sources like Google Trends,

Wikipedia and Google Correlate, resulted in a model capable of assisting in

 Data + ???? = Predictions

 Machine Learning

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

7

investment decisions and have a relatively high accuracy(more than 85% accuracy)
from movement predictions. So, we know, academics are researching this, and, we
also know that big banks are definitely doing this.

When it comes to the type of models, we could use, we’ve a huge assortment to try
from. Pending results from papers is a good start to see what has been tried before
and it’s not just about using Pattern Recognition algorithms.

Records for prices for traded commodities goes back to thousands of years. In
Finance, the field of Quantitative Analysis is about 25 years old. But even now
it’s still not fully accepted, understood or widely used. It’s a study of how certain
variables correlate with stock price behaviour. One of the first attempt at this was
made in the Seventies by two British statisticians Box and Jenkins using

Mainframe computers. The only historical data they had access to were prices
and volumes. They called their model “Arima”. At that time, it was and
expensive to run. But, by the Eighties, things started to get interesting. Spread-
sheets were invented so that firms could model companies’ financial performance,
and thus automated data collection became a reality and with improvement in
computing power, models could analyze data much faster. It was like a renaissance
on the Financial market.

In the past few years, we’ve seen a lot of academic papers published using neural
networks, to predict stock prices, with varying degrees of success. But until
recently, the ability to build these models has been restricted to academics who
spend their days writing very complex codes.

But now with libraries like TensorFlow and Keras, anyone can build powerful
predictive models, trained on massive datasets.

The Kalman filter was a significant breakthrough in the area of linear filtering and
prediction. It has been used in the processing of signals imbedded in noise for over
twenty five years. A major application of Kalman filtering is the solution of
navigational problems where information is received from multiple noisy sources.
The Kalman filter has also been used for applications outside the area of
navigation. C. R. Szelag published an article in the Bell System Technical Journal
using a Kalman filter to forecast telephone loading. The Kalman filter has even
made its way into the economic literature.

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

8

 The Kalman filter has been used to forecast economic quantities such
as sales and inventories. This project examines the use of the Kalman filter to
forecast intraday stock and commodity prices. The price forecasts are based on a
market's price history with no external information included. For the Kalman filter
to produce beneficial forecasts, the market must not be a random walk process, but
must exhibit a statistically significant autocorrelation pattern which can be
modeled.

 Once an appropriate Kalman filter model is determined, strategies for
increasing profits can be studied. This dissertation presents the analysis techniques
used to detect autocorrelation in a market and the models used to describe the
correlation. Several stock indexes and commodity markets are tested for
autocorrelation. The Kalman filter algorithm and an adaptive Kalman filter
algorithm are also presented and then are used to forecast prices for the Dow Jones
Transportation index. Several buy and sell strategies are used to investigate the use
of the Kalman filter forecasts to benefit market traders.

Amazon and Microsoft control the cloud market [through which AI is going to be
delivered], but they don’t have frameworks like Tensorflow [Google] or
Caffe/Torch [Facebook] to give them a strong leg up.

Amazon and Facebook have the key channels through which AI is mostly accessed
by public [Alexa or Facebook messenger].

Amazon and Google have the best speech APIs and NLP.

Microsoft and Amazon provide the best computer vision APIs.

Microsoft and IBM have the best sales teams in this space and work with the
widest range of partners to build the AI ecosystem.

Microsoft and Google provide ways to train models through services without
worrying about the underlying ML frameworks.

Facebook provides support to the widest range of opensource AI projects, but don’t
play the services game. Thus, they might not dominate the AI market.

IBM Watson is the oldest and perhaps the most complete of AI tools/services, but
don’t engage well with small developers and thus their applications are limited.
Their focus is mostly on enterprise.

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

9

Google’s enterprise sales is weak, but it has perhaps the best of AI technology
available both inside and outside. The question is just how well can they interact
with the ecosystem and help build mission critical applications.

Apple has a good AI team inside but unlike other companies they don’t publish a
lot or talk outside their company. No one knows what they do and from what is
available public they are perhaps the weakest of the majors in this segment. Not
surprisingly Siri has lost out to its competitors in terms of usefulness.

In short, it is a game where no one company really dominates. But, Google perhaps
has a slight leg up over the others if everything is taken into consideration.

The approach of our project is unique in the sense that it is aimed at getting better
estimation through two successive stages of filtering, namely,

(i) A Machine Learning (an AI sub-domain) Classifier, which is a new-

age efficient estimation technology.

(ii) Kalman Filtering, which is a vintage efficient estimation technology.

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

10

2. Review of Literature:

 Artificial Intelligence:

 Artificial intelligence (AI, also machine
intelligence, MI) is Intelligence displayed by machines, in contrast with the natural
intelligence (NI) displayed by humans and other animals. In computer science AI
research is defined as the study of "intelligent agents": any device that perceives its
environment and takes actions that maximize its chance of success at some goal.

Colloquially, the term "artificial intelligence" is applied when a machine mimics
"cognitive" functions that humans associate with other human minds, such as
"learning" and "problem solving".

 While thought-capable artificial beings appeared as storytelling devices in
antiquity, the idea of actually trying to build a machine to perform useful
reasoning may have begun with Ramon Llull (c. 1300 CE). With his Calculus
ratiocinator, Gottfried Leibniz extended the concept of the calculating
machine (Wilhelm Schickard engineered the first one around 1623), intending to
perform operations on concepts rather than numbers. Since the 19th century,
artificial beings are common in fiction, as in Frankenstein or Karel Čapek's R.U.R.
(Rossum's Universal Robots).

 Machine Learning:

Machine learning is a field of computer science that gives computers the ability to
learn without being explicitly programmed.

 Arthur Samuel, an American pioneer in the field of computer
gaming and artificial intelligence, coined the term "Machine Learning" in 1959
while at IBM. Evolved from the study of pattern recognition and computational
learning theory in artificial intelligence, machine learning explores the study and
construction of algorithms that can learn from and make predictions on data – such
algorithms overcome following strictly static program instructions by making data-
driven predictions or decisions, through building a model from sample inputs.
Machine learning is employed in a range of computing tasks where designing and
programming explicit algorithms with good performance is difficult or infeasible;
example applications include email filtering, detection of network intruders or

https://en.wikipedia.org/wiki/Intelligence
https://en.wikipedia.org/wiki/Machine
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Intelligent_agent
https://en.wikipedia.org/wiki/Human_mind
https://en.wikipedia.org/wiki/Artificial_being
https://en.wikipedia.org/wiki/Storytelling_device
https://en.wikipedia.org/wiki/Ramon_Llull
https://en.wikipedia.org/wiki/Calculus_ratiocinator
https://en.wikipedia.org/wiki/Calculus_ratiocinator
https://en.wikipedia.org/wiki/Gottfried_Leibniz
https://en.wikipedia.org/wiki/Calculating_machine
https://en.wikipedia.org/wiki/Calculating_machine
https://en.wikipedia.org/wiki/Wilhelm_Schickard
https://en.wikipedia.org/wiki/Frankenstein
https://en.wikipedia.org/wiki/Karel_%C4%8Capek
https://en.wikipedia.org/wiki/R.U.R._(Rossum%27s_Universal_Robots)
https://en.wikipedia.org/wiki/R.U.R._(Rossum%27s_Universal_Robots)
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Arthur_Samuel
https://en.wikipedia.org/wiki/Computer_Gaming
https://en.wikipedia.org/wiki/Computer_Gaming
https://en.wikipedia.org/wiki/IBM
https://en.wikipedia.org/wiki/Pattern_recognition
https://en.wikipedia.org/wiki/Computational_learning_theory
https://en.wikipedia.org/wiki/Computational_learning_theory
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Data
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Mathematical_model
https://en.wikipedia.org/wiki/Email_filtering

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

11

malicious insiders working towards a data breach, optical character
recognition (OCR), learning to rank, and computer vision.

As a scientific endeavour, machine learning grew out of the quest for artificial
intelligence. Already in the early days of AI as an academic discipline, some
researchers were interested in having machines learn from data. They attempted to
approach the problem with various symbolic methods, as well as what were then
termed "neural networks"; these were mostly perceptrons and other models that
were later found to be reinventions of the generalized linear models of
statistics. Probabilistic reasoning was also employed, especially in automated
medical diagnosis.

However, an increasing emphasis on the logical, knowledge-based
approach caused a rift between AI and machine learning. Probabilistic systems
were plagued by theoretical and practical problems of data acquisition and
representation. By 1980, expert systems had come to dominate AI, and statistics
was out of favor. Work on symbolic/knowledge-based learning did continue within
AI, leading to inductive logic programming, but the more statistical line of
research was now outside the field of AI proper, in pattern recognition
and information retrieval. Neural networks research had been abandoned by AI and
computer science around the same time. This line, too, was continued outside the
AI/CS field, as "connectionism", by researchers from other disciplines
including Hopfield, Rumel hart and Hinton. Their main success came in the mid-
1980s with the reinvention of back propagation.

https://en.wikipedia.org/wiki/Data_breach
https://en.wikipedia.org/wiki/Optical_character_recognition
https://en.wikipedia.org/wiki/Optical_character_recognition
https://en.wikipedia.org/wiki/Learning_to_rank
https://en.wikipedia.org/wiki/Computer_vision
https://en.wikipedia.org/wiki/Neural_network
https://en.wikipedia.org/wiki/Perceptron
https://en.wikipedia.org/wiki/ADALINE
https://en.wikipedia.org/wiki/Generalized_linear_model
https://en.wikipedia.org/wiki/Probability_theory
https://en.wikipedia.org/wiki/GOFAI
https://en.wikipedia.org/wiki/GOFAI
https://en.wikipedia.org/wiki/Expert_system
https://en.wikipedia.org/wiki/Inductive_logic_programming
https://en.wikipedia.org/wiki/Pattern_recognition
https://en.wikipedia.org/wiki/Information_retrieval
https://en.wikipedia.org/wiki/Connectionism
https://en.wikipedia.org/wiki/John_Hopfield
https://en.wikipedia.org/wiki/David_Rumelhart
https://en.wikipedia.org/wiki/Geoff_Hinton
https://en.wikipedia.org/wiki/Backpropagation

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

12

 Fig. Machine Learning Ontology

 Fig. Diagram combining two classes

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

13

 Machine Learning Classifiers:

 Decision Tree Algorithm:

A tree has many analogies in real life, and turns out that it has
influenced a wide area of machine learning, covering
both classification and regression. In decision analysis, a decision
tree can be used to visually and explicitly represent decisions and
decision making. As the name goes, it uses a tree-like model of
decisions. Though a commonly used tool in data mining for deriving a
strategy to reach a particular goal, its also widely used in machine
learning.

How can an algorithm be represented as a tree?

For this let’s consider a very basic example that uses titanic data set for
predicting whether a passenger will survive or not. Below model uses 3
features/attributes/columns from the data set, namely sex, age and sibsp
(number of spouses or children along).

Image taken from Wikipedia

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

14

A decision tree is drawn upside down with its root at the top. In the image on the
left, the bold text in black represents a condition/internal node, based on which the
tree splits into branches/ edges. The end of the branch that doesn’t split anymore is
the decision/leaf, in this case, whether the passenger died or survived, represented
as red and green text respectively.

Although, a real dataset will have a lot more features and this will just be a branch
in a much bigger tree, but you can’t ignore the simplicity of this algorithm.
The feature importance is clear and relations can be viewed easily. This
methodology is more commonly known as learning decision tree from data and
above tree is called Classification tree as the target is to classify passenger as
survived or died. Regression trees are represented in the same manner, just they
predict continuous values like price of a house. In general, Decision Tree
algorithms are referred to as CART or Classification and Regression Trees.

So, what is actually going on in the background? Growing a tree involves

deciding on which features to choose and what conditions to use for splitting,

along with knowing when to stop. As a tree generally grows arbitrarily, you
will need to trim it down for it to look beautiful. Lets start with a common

technique used for splitting.

Recursive Binary Splitting

In this procedure all the features are considered and different split points are tried
and tested using a cost function. The split with the best cost (or lowest cost) is
selected.

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

15

Consider the earlier example of tree learned from titanic dataset. In the first split or
the root, all attributes/features are considered and the training data is divided into
groups based on this split. We have 3 features, so will have 3 candidate splits. Now
we will calculate how much accuracy each split will cost us, using a function. The
split that costs least is chosen, which in our example is sex of the passenger.
This algorithm is recursive in nature as the groups formed can be sub-divided using
same strategy. Due to this procedure, this algorithm is also known as the greedy
algorithm, as we have an excessive desire of lowering the cost. This makes the root
node as best predictor/classifier.

Cost of a split

Lets take a closer look at cost functions used for classification and regression. In
both cases the cost functions try to find most homogeneous branches, or branches
having groups with similar responses. This makes sense we can be more sure that a
test data input will follow a certain path.
Regression : sum(y — prediction)²

Lets say, we are predicting the price of houses. Now the decision tree will start
splitting by considering each feature in training data. The mean of responses of the
training data inputs of particular group is considered as prediction for that group.
The above function is applied to all data points and cost is calculated for all
candidate splits. Again the split with lowest cost is chosen. Another cost function
involves reduction of standard deviation, more about it can be found here.
Classification : G = sum(pk * (1 — pk))

A Gini score gives an idea of how good a split is by how mixed the response classes
are in the groups created by the split. Here, pk is proportion of same class inputs
present in a particular group. A perfect class purity occurs when a group contains
all inputs from the same class, in which case pk is either 1 or 0 and G = 0, where as
a node having a 50–50 split of classes in a group has the worst purity, so for a
binary classification it will have pk = 0.5 and G = 0.5.

When to stop splitting?

https://medium.com/towards-data-science/balancing-bias-and-variance-to-control-errors-in-machine-learning-16ced95724db
http://www.saedsayad.com/decision_tree_reg.htm

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

16

You might ask when to stop growing a tree? As a problem usually has a large set of
features, it results in large number of split, which in turn gives a huge tree. Such
trees are complex and can lead to overfitting. So, we need to know when to stop?
One way of doing this is to set a minimum number of training inputs to use on each
leaf. For example we can use a minimum of 10 passengers to reach a decision(died
or survived), and ignore any leaf that takes less than 10 passengers. Another way is
to set maximum depth of your model. Maximum depth refers to the the length of
the longest path from a root to a leaf.

Pruning

The performance of a tree can be further increased by pruning. It involves removing
the branches that make use of features having low importance. This way, we reduce
the complexity of tree, and thus increasing its predictive power by reducing
overfitting.

Pruning can start at either root or the leaves. The simplest method of pruning starts
at leaves and removes each node with most popular class in that leaf, this change is
kept if it doesn't deteriorate accuracy. Its also called reduced error pruning. More
sophisticated pruning methods can be used such as cost complexity pruning where a
learning parameter (alpha) is used to weigh whether nodes can be removed based
on the size of the sub-tree. This is also known as weakest link pruning.

Advantages of CART

 Simple to understand, interpret, visualize.

 Decision trees implicitly perform variable screening or feature selection.

 Can handle both numerical and categorical data. Can also handle multi-output
problems.

 Decision trees require relatively little effort from users for data preparation.

 Nonlinear relationships between parameters do not affect tree performance.

Disadvantages of CART

 Decision-tree learners can create over-complex trees that do not generalize the
data well. This is called overfitting.

https://medium.com/towards-data-science/balancing-bias-and-variance-to-control-errors-in-machine-learning-16ced95724db

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

17

 Decision trees can be unstable because small variations in the data might result
in a completely different tree being generated. This is called variance, which
needs to be lowered by methods like bagging and boosting.

 Greedy algorithms cannot guarantee to return the globally optimal decision tree.
This can be mitigated by training multiple trees, where the features and samples
are randomly sampled with replacement.

 Decision tree learners create biased trees if some classes dominate. It is
therefore recommended to balance the data set prior to fitting with the decision
tree.

This is all the basic, to get you at par with decision tree learning. An
improvement over decision tree learning is made using technique of boosting. A
popular library for implementing these algorithms is Scikit-Learn. It has a
wonderful api that can get your model up an running with just a few lines of
code in python.

 Random Forest Model:

Random Forest is a flexible, easy to use machine learning algorithm that
produces, even without hyper-parameter tuning, a great result most of the
time. It is also one of the most used algorithms, because it’s simplicity and
the fact that it can be used for both classification and regression tasks. In this
post, you are going to learn, how the random forest algorithm works and
several other important things about it.

How it works:

Random Forest is a supervised learning algorithm. Like you can
already see from its name, it creates a forest and makes it somehow
random. The “forest” it builds, is an ensemble of Decision Trees, most
of the time trained with the “bagging” method. The general idea of the
bagging method is that a combination of learning models increases the
overall result.

To say it in simple words: Random forest builds multiple decision trees and
merges them together to get a more accurate and stable prediction.

https://medium.com/towards-data-science/balancing-bias-and-variance-to-control-errors-in-machine-learning-16ced95724db
https://towardsdatascience.com/boosting-the-accuracy-of-your-machine-learning-models-f878d6a2d185
https://medium.com/towards-data-science/balancing-bias-and-variance-to-control-errors-in-machine-learning-16ced95724db
https://towardsdatascience.com/boosting-the-accuracy-of-your-machine-learning-models-f878d6a2d185
https://becominghuman.ai/implementing-decision-trees-using-scikit-learn-5057b27221ec

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

18

One big advantage of random forest is, that it can be used for both
classification and regression problems, which form the majority of current
machine learning systems. I will talk about random forest in classification,
since classification is sometimes considered the building block of machine
learning. Below you can see how a random forest would look like with two
trees:

With a few exceptions a random-forest classifier has all the hyper-parameters
of a decision-tree classifier and also all the hyper-parameters of a bagging
classifier, to control the ensemble itself. Instead of building a bagging-
classifier and passing it into a decision-tree-classifier, you can just use the
random-forest classifier class, which is more convenient and optimized for
decision trees. Note that there is also a random-forest regressor for regression
tasks.

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

19

The random-forest algorithm brings extra randomness into the model, when it
is growing the trees. Instead of searching for the best feature while splitting a
node, it searches for the best feature among a random subset of features. This
process creates a wide diversity, which generally results in a better model.

Therefore when you are growing a tree in random forest, only a random subset
of the features is considered for splitting a node. You can even make trees
more random, by using random thresholds on top of it, for each feature rather
than searching for the best possible thresholds (like a normal decision tree
does).

 Deep Neural Network:

Neural networks are a set of algorithms, modeled loosely after the human
brain, that are designed to recognize patterns. They interpret sensory data
through a kind of machine perception, labeling or clustering raw input. The
patterns they recognize are numerical, contained in vectors, into which all
real-world data, be it images, sound, text or time series, must be translated.

Neural networks help us cluster and classify. You can think of them as a
clustering and classification layer on top of the data you store and manage.
They help to group unlabeled data according to similarities among the
example inputs, and they classify data when they have a labeled dataset to
train on. (Neural networks can also extract features that are fed to other
algorithms for clustering and classification; so you can think of deep neural
networks as components of larger machine-learning applications involving
algorithms for reinforcement learning, classification and regression.)

Classification

All classification tasks depend upon labeled datasets; that is, humans must
transfer their knowledge to the dataset in order for a neural to learn the
correlation between labels and data. This is known as supervised learning.

Detect faces, identify people in images, recognize facial expressions (angry,
joyful)

https://deeplearning4j.org/deepreinforcementlearning.html
https://deeplearning4j.org/logistic-regression.html
https://deeplearning4j.org/neuralnet-overview#classification

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

20

Identify objects in images (stop signs, pedestrians, lane markers…)

Recognize gestures in video

Detect voices, identify speakers, transcribe speech to text, recognize
sentiment in voices

Classify text as spam (in emails), or fraudulent (in insurance claims);
recognize sentiment in text (customer feedback)

Any labels that humans can generate, any outcomes you care about and
which correlate to data, can be used to train a neural network.

Clustering

Clustering or grouping is the detection of similarities. Deep learning does not
require labels to detect similarities. Learning without labels is called unsupervised
learning. Unlabeled data is the majority of data in the world. One law of machine
learning is: the more data an algorithm can train on, the more accurate it will be.
Therefore, unsupervised learning has the potential to produce highly accurate
models.

Search: Comparing documents, images or sounds to surface similar items.

Anomaly detection: The flipside of detecting similarities is detecting
anomalies, or unusual behavior. In many cases, unusual behavior correlates
highly with things you want to detect and prevent, such as fraud.

Predictive Analytics: Regressions

With classification, deep learning is able to establish correlations between,
say, pixels in an image and the name of a person. You might call this a static
prediction. By the same token, exposed to enough of the right data, deep
learning is able to establish correlations between present events and future
events. It can run regression between the past and the future. The future
event is like the label in a sense. Deep learning doesn’t necessarily care
about time, or the fact that something hasn’t happened yet. Given a time

https://deeplearning4j.org/neuralnet-overview#clustering
https://deeplearning4j.org/neuralnet-overview#predictive-analytics-regressions

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

21

series, deep learning may read a string of number and predict the number
most likely to occur next.

 Hardware breakdowns (data centers, manufacturing, transport)

Health breakdowns (strokes, heart attacks based on vital stats and data from
wearables)

Customer churn (predicting the likelihood that a customer will leave, based
on web activity and metadata)

Employee turnover (ditto, but for employees)

The better we can predict, the better we can prevent and pre-empt. As you
can see, with neural networks, we’re moving towards a world of fewer
surprises. Not zero surprises, just marginally fewer. We’re also moving
toward a world of smarter agents that combine neural networks with other
algorithms like reinforcement learning to attain goals.

With that brief overview of deep learning use cases, let’s look at what neural
nets are made of.

Neural Network Elements

Deep learning is the name we use for “stacked neural networks”; that is,
networks composed of several layers.

The layers are made of nodes. A node is just a place where computation
happens, loosely patterned on a neuron in the human brain, which fires when
it encounters sufficient stimuli. A node combines input from the data with a
set of coefficients, or weights, that either amplify or dampen that input,
thereby assigning significance to inputs for the task the algorithm is trying to
learn. (For example, which input is most helpful is classifying data without
error?) These input-weight products are summed and the sum is passed
through a node’s so-called activation function, to determine whether and to
what extent that signal progresses further through the network to affect the
ultimate outcome, say, an act of classification.

https://deeplearning4j.org/deepreinforcementlearning
https://deeplearning4j.org/use_cases

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

22

Here’s a diagram of what one node might look like.

A node layer is a row of those neuronlike switches that turn on or off as the
input is fed through the net. Each layer’s output is simultaneously the
subsequent layer’s input, starting from an initial input layer receiving your
data.

Pairing adjustable weights with input features is how we assign significance to
those features with regard to how the network classifies and clusters input.

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

23

Example: Feedforward Networks

Our goal in using a neural net is to arrive at the point of least error as fast as
possible. We are running a race, and the race is around a track, so we pass the same
points repeatedly in a loop. The starting line for the race is the state in which our
weights are initialized, and the finish line is the state of those parameters when
they are capable of producing accurate classifications and predictions.

The race itself involves many steps, and each of those steps resembles the steps
before and after. Just like a runner, we will engage in a repetitive act over and over
to arrive at the finish. Each step for a neural network involves a guess, an error
measurement and a slight update in its weights, an incremental adjustment to the
coefficients.

A collection of weights, whether they are in their start or end state, is also called a
model, because it is an attempt to model data’s relationship to ground-truth labels,
to grasp the data’s structure. Models normally start out bad and end up less bad,
changing over time as the neural network updates its parameters.

This is because a neural network is born in ignorance. It does not know which
weights and biases will translate the input best to make the correct guesses. It has
to start out with a guess, and then try to make better guesses sequentially as it
learns from its mistakes. (You can think of a neural network as a miniature
enactment of the scientific method, testing hypotheses and trying again – only it is
the scientific method with a blindfold on.)

Here is a simple explanation of what happens during learning with a feedforward
neural network, the simplest architecture to explain.

Input enters the network. The coefficients, or weights, map that input to a set of
guesses the network makes at the end.

input * weight = guess

Weighted input results in a guess about what that input is. The neural then takes its
guess and compares it to a ground-truth about the data, effectively asking an expert
“Did I get this right?”

ground truth - guess = error

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

24

The difference between the network’s guess and the ground truth is its error. The
network measures that error, and walks the error back over its model, adjusting
weights to the extent that they contributed to the error.

error * weight's contribution to error = adjustment

The three pseudo-mathematical formulas above account for the three key functions
of neural networks: scoring input, calculating loss and applying an update to the
model – to begin the three-step process over again. A neural network is a
corrective feedback loop, rewarding weights that support its correct guesses, and
punishing weights that lead it to err.

Let’s linger on the first step above.

Multiple Linear Regression

Despite their biologically inspired name, artificial neural networks are nothing
more than math and code, like any other machine-learning algorithm. In fact,
anyone who understands linear regression, one of first methods you learn in
statistics, can understand how a neural net works. In its simplest form, linear
regression is expressed as

Y_hat = bX + a

where Y_hat is the estimated output, X is the input, b is the slope and a is the
intercept of a line on the vertical axis of a two-dimensional graph. (To make this
more concrete: X could be radiation exposure and Y could be the cancer risk; X
could be daily pushups and Y could be the total weight you can benchpress; X the
amount of fertilizer and Y the size of the crop.) You can imagine that every time
you add a unit to X, the dependent variable Y increases proportionally, no matter
how far along you are on the X axis. That simple relation between two variables
moving up or down together is a starting point.

The next step is to imagine multiple linear regression, where you have many input
variables producing an output variable. It’s typically expressed like this:

Y_hat = b_1*X_1 + b_2*X_2 + b_3*X_3 + a

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

25

(To extend the crop example above, you might add the amount of sunlight and
rainfall in a growing season to the fertilizer variable, with all three
affecting Y_hat.)

Now, that form of multiple linear regression is happening at every node of a neural
network. For each node of a single layer, input from each node of the previous
layer is recombined with input from every other node. That is, the inputs are mixed
in different proportions, according to their coefficients, which are different leading
into each node of the subsequent layer. In this way, a net tests which combination
of input is significant as it tries to reduce error.

Once you sum your node inputs to arrive at Y_hat, it’s passed through a non-linear
function. Here’s why: If every node merely performed multiple linear
regression, Y_hat would increase linearly and without limit as the X’s increase, but
that doesn’t suit our purposes.

What we are trying to build at each node is a switch (like a neuron…) that turns on
and off, depending on whether or not it should let the signal of the input pass
through to affect the ultimate decisions of the network.

When you have a switch, you have a classification problem. Does the input’s
signal indicate the node should classify it as enough, or not_enough, on or off? A
binary decision can be expressed by 1 and 0, and logistic regression is a non-linear
function that squashes input to translate it to a space between 0 and 1.

The nonlinear transforms at each node are usually s-shaped functions similar to
logistic regression. They go by the names of sigmoid (the Greek word for “S”),
tanh, hard tanh, etc., and they shaping the output of each node. The output of all
nodes, each squashed into an s-shaped space between 0 and 1, is then passed as
input to the next layer in a feed forward neural network, and so on until the signal
reaches the final layer of the net, where decisions are made.

Gradient Descent

The name for one commonly used optimization function that adjusts weights
according to the error they caused is called “gradient descent.”

Gradient is another word for slope, and slope, in its typical form on an x-y graph,
represents how two variables relate to each other: rise over run, the change in
money over the change in time, etc. In this particular case, the slope we care about

https://deeplearning4j.org/neuralnet-overview#logistic
https://deeplearning4j.org/neuralnet-overview#gradient-descent

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

26

describes the relationship between the network’s error and a single weight; i.e. that
is, how does the error vary as the weight is adjusted.

To put a finer point on it, which weight will produce the least error? Which one
correctly represents the signals contained in the input data, and translates them to a
correct classification? Which one can hear “nose” in an input image, and know that
should be labeled as a face and not a frying pan?

As a neural network learns, it slowly adjusts many weights so that they can map
signal to meaning correctly. The relationship between network Error and each of
those weights is a derivative, dE/dw, that measures the degree to which a slight
change in a weight causes a slight change in the error.

Each weight is just one factor in a deep network that involves many transforms; the
signal of the weight passes through activations and sums over several layers, so we
use the chain rule of calculus to march back through the networks activations and
outputs and finally arrive at the weight in question, and its relationship to overall
error.

The chain rule in calculus states that

In a feedforward network, the relationship between the net’s error and a single
weight will look something like this:

That is, given two variables, Error and weight, that are mediated by a third
variable, activation, through which the weight is passed, you can calculate how a
change in weight affects a change in Error by first calculating how a change
in activation affects a change in Error, and how a change in weight affects a
change in activation.

The essence of learning in deep learning is nothing more than that: adjusting a
model’s weights in response to the error it produces, until you can’t reduce the
error any more.

https://en.wikipedia.org/wiki/Chain_rule

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

27

Updaters

DL4J support the following Updaters

 ADADELTA
 ADAGRAD
 ADAM
 NESTEROVS
 NONE
 RMSPROP
 SGD
 CONJUGATE GRADIENT
 HESSIAN FREE
 LBFGS
 LINE GRADIENT DESCENT

The JavaDoc for updaters is part of the DeepLearning4J JavaDoc and is
available here.

Activation Functions

The activation function determines what output a node will generate base upon its
input. Sigmoid activation functions had been very populare, ReLU is currently
very popular. In DeepLearnging4J the activation function is set at the layer level
and applies to all neurons in that layer.

Supported Activation functions

 CUBE
 ELU
 HARDSIGMOID
 HARDTANH
 IDENTITY
 LEAKYRELU

https://deeplearning4j.org/doc/org/deeplearning4j/nn/conf/Updater.html

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

28

 RATIONALTANH
 RELU
 RRELU
 SIGMOID
 SOFTMAX
 SOFTPLUS
 SOFTSIGN
 TANH

Configuring an activation function

layer(2, new OutputLayer.Builder(LossFunctions.LossFunction.NEGATIVELOG
LIKELIHOOD).activation(Activation.SOFTMAX)

Custom layers, activation functions and loss functions

Deeplearning4j support custom Layers, activations and Loss Functions.

Logistic Regression

On a deep neural network of many layers, the final layer has a particular role.
When dealing with labeled input, the output layer classifies each example,
applying the most likely label. Each node on the output layer represents one label,
and that node turns on or off according to the strength of the signal it receives from
the previous layer’s input and parameters.

Each output node produces two possible outcomes, the binary output values 0 or 1,
because an input variable either deserves a label or it does not. After all, there is no
such thing as a little pregnant.

While neural networks working with labeled data produce binary output, the input
they receive is often continuous. That is, the signals that the network receives as

https://en.wikipedia.org/wiki/Law_of_excluded_middle

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

29

input will span a range of values and include any number of metrics, depending on
the problem it seeks to solve.

For example, a recommendation engine has to make a binary decision about
whether to serve an ad or not. But the input it bases its decision on could include
how much a customer has spent on Amazon in the last week, or how often that
customer visits the site.

So the output layer has to condense signals such as $67.59 spent on diapers, and 15
visits to a website, into a range between 0 and 1; i.e. a probability that a given
input should be labeled or not.

The mechanism we use to convert continuous signals into binary output is
called logistic regression. The name is unfortunate, since logistic regression is used
for classification rather than regression in the linear sense that most people are
familiar with. It calculates the probability that a set of inputs match the label.

Let’s examine this little formula.

For continuous inputs to be expressed as probabilities, they must output positive
results, since there is no such thing as a negative probability. That’s why you see
input as the exponent of e in the denominator – because exponents force our results
to be greater than zero. Now consider the relationship of e’s exponent to the
fraction 1/1. One, as we know, is the ceiling of a probability, beyond which our
results can’t go without being absurd. (We’re 120% sure of that.)

As the input x that triggers a label grows, the expression e to the x shrinks toward
zero, leaving us with the fraction 1/1, or 100%, which means we approach (without
ever quite reaching) absolute certainty that the label applies. Input that correlates
negatively with your output will have its value flipped by the negative sign on e’s
exponent, and as that negative signal grows, the quantity e to the x becomes larger,
pushing the entire fraction ever closer to zero.

Now imagine that, rather than having x as the exponent, you have the sum of the
products of all the weights and their corresponding inputs – the total signal passing
through your net. That’s what you’re feeding into the logistic regression layer at
the output layer of a neural network classifier.

https://deeplearning4j.org/logistic-regression

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

30

With this layer, we can set a decision threshold above which an example is labeled
1, and below which it is not. You can set different thresholds as you prefer – a low
threshold will increase the number of false positives, and a higher one will increase
the number of false negatives – depending on which side you would like to err.

Loss Functions in DeepLearning4J

DeepLearning4J supports the following Loss Functions.

 MSE: Mean Squared Error: Linear Regression
 EXPLL: Exponential log likelihood: Poisson Regression
 XENT: Cross Entropy: Binary Classification
 MCXENT: Multiclass Cross Entropy
 RMSE_XENT: RMSE Cross Entropy
 SQUARED_LOSS: Squared Loss
 NEGATIVELOGLIKELIHOOD: Negative Log Likelihood

Applying Loss Functions in DeepLearning4J

The Loss Function is applied when building your output Layer.

layer(1, new OutputLayer.Builder(LossFunction.NEGATIVELOGLIKELIHOOD)

The JavaDoc for the Loss Function is part of ND4J javadoc and is available [here.]
(https://nd4j.org/doc/org/nd4j/linalg/api/ops/LossFunction.html)

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

31

Neural Networks & Artificial Intelligence

In some circles, neural networks are thought of as “brute force” AI, because they
start with a blank slate and hammer their way through to an accurate model. They
are effective, but to some eyes inefficient in their approach to modeling, which
can’t make assumptions about functional dependencies between output and input.

That said, gradient descent is not recombining every weight with every other to
find the best match – its method of pathfinding shrinks the relevant weight space,
and therefore the number of updates and required computation, by many orders of
magnitude.

Enterprise-Scale Deep Learning

To train complex neural networks on very large datasets, a deep learning cluster
using multiple chips, distributed over both GPUs and CPUs, is necessary if one is
to train the network in a reasonable amount of time. Software engineers training
those nets may avail themselves of GPUs in the cloud, or choose to depend on
proprietary racks. Deeplearning4j scales out equally well on both, using Spark as
an access layer to orchestrate multiple host threads over many cores. For support,
please contact Skymind.

Support Vector Regression:

Support vector machine
In machine learning, support vector machines (SVMs, also support vector
networks) are supervised learning models with associated learning algorithms that
analyze data used for classification and regression analysis. Given a set of training
examples, each marked as belonging to one or the other of two categories, an SVM
training algorithm builds a model that assigns new examples to one category or the
other, making it a non-probabilistic binary linear classifier (although methods such
as Platt scaling exist to use SVM in a probabilistic classification setting). An SVM

http://nd4j.org/gpu_native_backends.html
https://deeplearning4j.org/spark
https://www.skymind.io/contact
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Probabilistic_classification
https://en.wikipedia.org/wiki/Binary_classifier
https://en.wikipedia.org/wiki/Linear_classifier
https://en.wikipedia.org/wiki/Platt_scaling

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

32

model is a representation of the examples as points in space, mapped so that the
examples of the separate categories are divided by a clear gap that is as wide as
possible. New examples are then mapped into that same space and predicted to
belong to a category based on which side of the gap they fall.

In addition to performing linear classification, SVMs can efficiently perform a
non-linear classification using what is called the kernel trick, implicitly mapping
their inputs into high-dimensional feature spaces.

When data are not labeled, supervised learning is not possible, and an unsupervised
learning approach is required, which attempts to find natural clustering of the
data to groups, and then map new data to these formed groups. The support vector
clustering[2]algorithm created by Hava Siegelmann and Vladimir Vapnik, applies
the statistics of support vectors, developed in the support vector machines
algorithm, to categorize unlabeled data, and is one of the most widely used
clustering algorithms in industrial applications.

Applications

SVMs can be used to solve various real world problems:

 SVMs are helpful in text and hypertext categorization as their application can
significantly reduce the need for labeled training instances in both the standard
inductive and transductive settings.

 Classification of images can also be performed using SVMs. Experimental
results show that SVMs achieve significantly higher search accuracy than
traditional query refinement schemes after just three to four rounds of relevance
feedback. This is also true of image segmentation systems, including those
using a modified version SVM that uses the privileged approach as suggested
by Vapnik.

 Hand-written characters can be recognized using SVM.
 The SVM algorithm has been widely applied in the biological and other

sciences. They have been used to classify proteins with up to 90% of the
compounds classified correctly. Permutation tests based on SVM weights have
been suggested as a mechanism for interpretation of SVM models. Support
vector machine weights have also been used to interpret SVM models in the
past. Posthoc interpretation of support vector machine models in order to
identify features used by the model to make predictions is a relatively new area
of research with special significance in the biological sciences.

https://en.wikipedia.org/wiki/Kernel_trick
https://en.wikipedia.org/wiki/Unsupervised_learning
https://en.wikipedia.org/wiki/Unsupervised_learning
https://en.wikipedia.org/wiki/Data_clustering
https://en.wikipedia.org/wiki/Data_clustering
https://en.wikipedia.org/wiki/Support_vector_machine#cite_note-HavaSiegelmann-2
https://en.wikipedia.org/wiki/Hava_Siegelmann
https://en.wikipedia.org/wiki/Vladimir_Vapnik
https://en.wikipedia.org/wiki/Text_categorization
https://en.wikipedia.org/wiki/Transduction_(machine_learning)
https://en.wikipedia.org/wiki/Image_classification
https://en.wikipedia.org/wiki/Image_segmentation
https://en.wikipedia.org/wiki/Handwriting_recognition
https://en.wikipedia.org/wiki/Permutation_test

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

33

Radial basis function network

A radial basis function (RBF) is a real-valued function whose value depends
only on the distance from the origin. Any function that satisfies the property is
called a radial function. The norm is usually Euclidean distance, although other
distance functions are also possible.

Sums of radial basis functions are typically used to approximate given
functions. This approximation process can also be interpreted as a simple kind
of neural network; this was the context in which they originally surfaced, in
work by David Broomhead and David Lowe in 1988, which stemmed from
Michael J. D. Powell's seminal research from 1977. RBFs are also used as a
kernel in support vector classification.

In the field of mathematical modeling, a radial basis function network is an
artificial neural network that uses radial basis functions as activation functions.
The output of the network is a linear combination of radial basis functions of
the inputs and neuron parameters. Radial basis function networks have many
uses, including function approximation, time series prediction, classification,
and system control. They were first formulated in a 1988 paper by Broomhead
and Lowe, both researchers at the Royal Signals and Radar Establishment.

Radial basis function (RBF) networks typically have three layers: an input
layer, a hidden layer with a non-linear RBF activation function and a linear
output layer. The input can be modeled as a vector of real numbers. Functions
that depend only on the distance from a center vector are radially symmetric
about that vector, hence the name radial basis function. In the basic form all
inputs are connected to each hidden neuron.

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

34

 Linear Regression:

 Linear Regression Graph

Linear regression is used for finding linear relationship between target and one or
more predictors. There are two types of linear regression- Simple and Multiple.

Simple Linear Regression

Simple linear regression is useful for finding relationship between two continuous
variables. One is predictor or independent variable and other is response or

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

35

dependent variable. It looks for statistical relationship but not deterministic
relationship. Relationship between two variables is said to be deterministic if one
variable can be accurately expressed by the other. For example, using temperature
in degree Celsius it is possible to accurately predict Fahrenheit. Statistical
relationship is not accurate in determining relationship between two variables. For
example, relationship between height and weight.

The core idea is to obtain a line that best fits the data. The best fit line is the one for
which total prediction error (all data points) are as small as possible. Error is the
distance between the point to the regression line.

Real-time example

We have a dataset which contains information about relationship between ‘number
of hours studied’ and ‘marks obtained’. Many students have been observed and
their hours of study and grade are recorded. This will be our training data. Goal is to
design a model that can predict marks if given the number of hours studied. Using
the training data, a regression line is obtained which will give minimum error. This
linear equation is then used for any new data. That is, if we give number of hours
studied by a student as an input, our model should predict their mark with minimum
error.

Y(pred) = b0 + b1*x

The values b0 and b1 must be chosen so that they minimize the error. If sum of
squared error is taken as a metric to evaluate the model, then goal to obtain a line
that best reduces the error.

Figure 2: Error Calculation

If we don’t square the error, then positive and negative point will cancel out each
other.

For model with one predictor,

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

36

Figure 3: Intercept Calculation

Figure 4: Co-efficient Formula

Exploring ‘b1’

 If b1 > 0, then x(predictor) and y(target) have a positive relationship. That is
increase in x will increase y.

 If b1 < 0, then x(predictor) and y(target) have a negative relationship. That is
increase in x will decrease y.

Exploring ‘b0’

 If the model does not include x=0, then the prediction will become meaningless
with only b0. For example, we have a dataset that relates height(x) and
weight(y). Taking x=0(that is height as 0), will make equation have only b0
value which is completely meaningless as in real-time height and weight can
never be zero. This resulted due to considering the model values beyond its
scope.

 If the model includes value 0, then ‘b0’ will be the average of all predicted
values when x=0. But, setting zero for all the predictor variables is often
impossible.

 The value of b0 guarantee that residual have mean zero. If there is no ‘b0’ term,
then regression will be forced to pass over the origin. Both the regression co-
efficient and prediction will be biased.

Co-efficient from Normal equations

Apart from above equation co-efficient of the model can also be calculated from
normal equation.

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

37

Figure 5: Co-efficient calculation using Normal Equation

Theta contains co-efficient of all predictors including constant term ‘b0’. Normal
equation performs computation by taking inverse of input matrix. Complexity of the
computation will increase as the number of features increase. It gets very slow
when number of features grow large.

Below is the python implementation of the equation.

 Python implementation of Normal Equation

Optimizing using gradient descent

Complexity of the normal equation makes it difficult to use, this is where gradient
descent method comes into picture. Partial derivative of the cost function with
respect to the parameter can give optimal co-efficient value.

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

38

Python code for gradient descent

 Python Implementation of gradient descent

 Reinforcement Learning:

While neural networks are responsible for recent breakthroughs in problems
like computer vision, machine translation and time series prediction – they
can also combine with reinforcement learning algorithms to create
something astounding like AlphaGo.

Reinforcement learning refers to goal-oriented algorithms, which learn how to
attain a complex objective (goal) or maximize along a particular dimension over
many steps; for example, maximize the points won in a game over many moves.
They can start from a blank slate, and under the right conditions they achieve
superhuman performance. Like a child incentivized by spankings and candy, these
algorithms are penalized when they make the wrong decisions and rewarded when
they make the right ones – this is reinforcement.

Reinforcement algorithms that incorporate deep learning can beat world champions
at the game of Go as well as human experts playing numerous Atari video games.
While that may sound trivial, it’s a vast improvement over their previous
accomplishments, and the state of the art is progressing rapidly.

https://deepmind.com/blog/alphago-zero-learning-scratch/
https://deeplearning4j.org/deep-learning-and-the-game-of-go
https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

39

Reinforcement learning solves the difficult problem of correlating immediate
actions with the delayed returns they produce. Like humans, reinforcement
learning algorithms sometimes have to wait a while to see the fruit of their
decisions. They operate in a delayed return environment, where it can be difficult
to understand which action leads to which outcome over many time steps.

Reinforcement learning algorithms can be expected to perform better and better in
more ambiguous, real-life environments while choosing from an arbitrary number
of possible actions, rather than from the limited options of a video game. That is,
with time we expect them to be valuable to achieve goals in the real world.

Two reinforcement learning algorithms - Deep-Q learning and A3C - have been
implemented in a Deeplearning4j library called RL4J. It can already play Doom.

Reinforcement Learning Definitions

Reinforcement learning can be understand using the concepts of agents,
environments, states, actions and rewards, all of which we’ll explain below.
Capital letters tend to denote sets of things, and lower-case letters denote a specific
instance of that thing; e.g. A is all possible actions, while a is a specific action
contained in the set.

 Agent: An agent takes actions; for example, a drone making a delivery, or
Super Mario navigating a video game. The algorithm is the agent. In life, the
agent is you.1

 Action (A): A is the set of all possible moves the agent can make.
An action is almost self-explanatory, but it should be noted that agents
choose among a list of possible actions. In video games, the list might
include running right or left, jumping high or low, crouching or standing
still. In the stock markets, the list might include buying, selling or holding
any one of an array of securities and their derivatives. When handling aerial
drones, alternatives would include many different velocities and
accelerations in 3D space.

 Discount factor: The discount factor is multiplied with future rewards as
discovered by the agent in order to dampen their effect on the agent’s choice
of action. It makes future rewards worth less than immediate rewards; i.e. it

https://github.com/deeplearning4j/rl4j
https://www.youtube.com/watch?v=Pgktl6PWa-o
https://deeplearning4j.org/deepreinforcementlearning#one

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

40

enforces a kind of short-term hedonism on the agent. Often expressed with
the lower-case Greek letter gamma: γ. If γ is .8, and there’s a reward of 10
points after 3 time steps, the present value of that reward is 0.8³ x 10. A
discount factor of 1 would make future rewards worth just as much as
immediate rewards.

 Environment: The world through which the agent moves. The environment
takes the agent’s current state and action as input, and returns as output the
agent’s reward and next state. If you are the agent, the environment could be
the laws of physics and the rules of society that process your actions and
determine the consequences of them.

 State (S): A state is a concrete and immediate situation in which the agent
finds itself; i.e. a specific place and moment, an instantaneous configuration
that puts the agent in relation to other significant things such as tools,
obstacles, enemies or prizes. It can the current situation returned by the
environment, or any future situation. Were you ever in the wrong place at
the wrong time? That’s a state.

 Reward (R): A reward is the feedback by which we measure the success or
failure of an agent’s actions. For example, in a video game, when Mario
touches a coin, he wins points. From any given state, an agent sends output
in the form of actions to the environment, and the environment returns the
agent’s new state (which resulted from acting on the previous state) as well
as rewards, if there are any. Rewards can be immediate or delayed. They
effectively evaluate the agent’s action.

 Policy (π): The policy is the strategy that the agent employs to determine the
next action based on the current state. It maps states to actions, the actions
that promise the highest reward.

 Value (V): The expected long-term return with discount, as opposed to the
short-term reward R. Vπ(s) is defined as the expected long-term return of the
current state under policy π. We discount rewards, or lower their estimated
value, the further into the future they occur. See discount factor.

 Q-value or action-value (Q): Q-value is similar to Value, except that it takes
an extra parameter, the current action a. Qπ(s, a) refers to the long-term
return of the current state s, taking action a under policy π. Q maps state-
action pairs to rewards. Note the difference between Q and policy.

 Trajectory: A sequence of states and actions that influence those states.
From the Latin “to throw across.”

So environments are functions that transform an action taken in the current state
into the next state and a reward; agents are functions that transform the new state

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

41

and reward into the next action. We can know the agent’s function, but we cannot
know the function of the environment. It is a black box where we only see the
inputs and outputs. Reinforcement learning represents an agent’s attempt to
approximate the environment’s function, such that we can send actions into the
black-box environment that maximize the rewards it spits out.

In the feedback loop above, the subscripts denote the time steps t and t+1, each of
which refer to different states: the state at moment t, and the state at moment t+1.
Unlike other forms of machine learning – such as supervised and unsupervised
learning – reinforcement learning can only be thought about sequentially in terms
of state-action pairs that occur one after the other.

Reinforcement learning judges actions by the results they produce. It is goal
oriented, and its aim is to learn sequences of actions that will lead an agent to
achieve its goal, or maximize its objective function. Here are some examples:

 In video games, the goal is to finish the game with the most points, so each
additional point obtained throughout the game will affect the agent’s
subsequent behavior; i.e. the agent may learn that it should shoot battleships,
touch coins or dodge meteors to maximize its score.

 In the real world, the goal might be for a robot to travel from point A to
point B, and every inch the robot is able to move closer to point B could be
counted like points.

Here’s an example of an objective function for reinforcement learning; i.e. the way
it defines its goal.

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

42

We are summing reward function r over t, which stands for time steps. So this
objective function calculates all the reward we could obtain by running through,
say, a game. Here, x is the state at a given time step, and a is the action taken in
that state. r is the reward function for x and a. (We’ll ignore γ for now.)

Reinforcement learning differs from both supervised and unsupervised learning by
how it interprets inputs. We can illustrate their difference by describing what they
learn about a “thing.”

 Unsupervised learning: That thing is like this other thing. (The algorithms
learn similarities w/o names, and by extension they can spot the inverse and
perform anomaly detection by recognizing what is unusual or dissimilar)

 Supervised learning: That thing is a “double bacon cheese burger”. (Labels,
putting names to faces…) These algorithms learn the correlations between
data instances and their labels; that is, they require a labelled dataset. Those
labels are used to “supervise” and correct the algorithm as it makes wrong
guesses when predicting labels.

 Reinforcement learning: Eat that thing because it tastes good and will keep
you alive longer. (Actions based on short- and long-term rewards, such as
the amount of calories you ingest, or the length of time you survive.)
Reinforcement learning can be thought of as supervised learning in an
environment of sparse feedback.

The Relationship Between Machine Learning with Time

You could say that an algorithm is a method to more quickly aggregate the lessons
of time. Reinforcement learning algorithms have a different relationship to time
than humans do. An algorithm can run through the same states over and over again
while experimenting with different actions, until it can infer which actions are best
from which states. Effectively, algorithms enjoy their very own Groundhog Day,
where they start out as dumb jerks and slowly get wise.

Since humans never experience Groundhog Day outside the movie, reinforcement
learning algorithms have the potential to learn more, and better, than humans.
Indeed, the true advantage of these algorithms over humans stems not so much
from their inherent nature, but from their ability to live in parallel on many chips at

http://www.imdb.com/title/tt0107048/

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

43

once, to train night and day without fatigue, and therefore to learn more. An
algorithm trained on the game of Go, such as AlphaGo, will have played many
more games of Go than any human could hope to complete in 100 lifetimes.2

Neural Networks and Deep Reinforcement Learning

Where do neural networks fit in? Neural networks are the agent that learns to map
state-action pairs to rewards. Like all neural networks, they use coefficients to
approximate the function relating inputs to outputs, and their learning consists to
finding the right coefficients, or weights, by iteratively adjusting those weights
along gradients that promise less error.

In reinforcement learning, convolutional networks can be used to recognize an
agent’s state; e.g. the screen that Mario is on, or the terrain before a drone. That is,
they perform their typical task of image recognition.

But convolutional networks derive different interpretations from images in
reinforcement learning than in supervised learning. In supervised learning, the
network applies a label to an image; that is, it matches names to pixels.

 Keras:

Keras: The Python Deep Learning library

https://deeplearning4j.org/deepreinforcementlearning#two

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

44

Keras is a high-level neural networks API, written in Python and capable of
running on top of TensorFlow, CNTK, or Theano. It was developed with a focus
on enabling fast experimentation. Being able to go from idea to result with the

least possible delay is key to doing good research.

We use Keras if we need a deep learning library that:

 Allows for easy and fast prototyping (through user friendliness, modularity, and
extensibility).

 Supports both convolutional networks and recurrent networks, as well as
combinations of the two.

 Runs seamlessly on CPU and GPU.

Guiding principles
 User friendliness. Keras is an API designed for human beings, not machines. It

puts user experience front and center. Keras follows best practices for reducing
cognitive load: it offers consistent & simple APIs, it minimizes the number of
user actions required for common use cases, and it provides clear and actionable
feedback upon user error.

 Modularity. A model is understood as a sequence or a graph of standalone,
fully-configurable modules that can be plugged together with as little
restrictions as possible. In particular, neural layers, cost functions, optimizers,
initialization schemes, activation functions, regularization schemes are all
standalone modules that you can combine to create new models.

 Easy extensibility. New modules are simple to add (as new classes and
functions), and existing modules provide ample examples. To be able to easily
create new modules allows for total expressiveness, making Keras suitable for
advanced research.

 Work with Python. No separate models configuration files in a declarative
format. Models are described in Python code, which is compact, easier to
debug, and allows for ease of extensibility.

 TensorFlow:

https://github.com/tensorflow/tensorflow
https://github.com/Microsoft/cntk
https://github.com/Theano/Theano

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

45

TensorFlow is an open-source software library for dataflow programming across a
range of tasks. It is a symbolic math library, and is also used for machine
learning applications such as neural networks. It is used for both research and
production at Google often replacing its closed-source predecessor, DistBelief.

TensorFlow was developed by the Google Brain team for internal Google use. It
was released under the Apache 2.0 open source license on November 9, 2015.

Features

TensorFlow provides official Python API and C API; and without API stability
guarantee: C++, Go, and Java. Third party packages are available
for C#, Haskell, Julia, R, Scala, Rust, and OCaml.

A "WebGL accelerated, browser based JavaScript library for training and
deploying ML models" (where "for inference, TensorFlow.js with WebGL is 1.5-
2x slower than TensorFlow Python with AVX. For training, we have seen small
models train faster in the browser and large models train up to 10-15x slower in the
browser") was released by Tensorflow.org on March 30, 2018. They also have
with a note on "Swift for TensorFlow is an early stage research project. It has been
released to enable open source development and is not yet ready for general use by
machine learning developers."

Applications

Among the applications for which TensorFlow is the foundation, are automated
image captioning software, such as DeepDream. RankBrain now handles a
substantial number of search queries, replacing and supplementing traditional static
algorithm-based search results.

https://en.wikipedia.org/wiki/Open-source
https://en.wikipedia.org/wiki/Library_(computing)
https://en.wikipedia.org/wiki/Dataflow_programming
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Neural_networks
https://en.wikipedia.org/wiki/Google
https://en.wikipedia.org/wiki/Google_Brain
https://en.wikipedia.org/wiki/Apache_License
https://en.wikipedia.org/wiki/Python_(software)
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/Go_(programming_language)
https://en.wikipedia.org/wiki/Java_(software)
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)
https://en.wikipedia.org/wiki/Haskell_(programming_language)
https://en.wikipedia.org/wiki/Julia_(programming_language)
https://en.wikipedia.org/wiki/R_(software)
https://en.wikipedia.org/wiki/Scala_(programming_language)
https://en.wikipedia.org/wiki/Rust_(programming_language)
https://en.wikipedia.org/wiki/OCaml
https://en.wikipedia.org/wiki/WebGL
https://en.wikipedia.org/wiki/DeepDream

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

46

K- NEAREST NEIGHBOR ALGORITHM:

Introduction

Nowadays money investment in stock market gains major attention because of its

dynamic nature. So the significant issue in market finance is discovering well

organized approaches to outline and envision the stock market information to

provide individuals or organizations helpful data about the behavior of the market

for making decision about investment.The huge amount of important information

produced by the stock market has attracted researchers to investigate this issue

utilizing distinctive approaches. Since stock markets produce huge datasets it data

mining techniques is found to be more efficient.Data mining is utilized for

excavate data from databases and discover the meaningful patterns from the

database. The usefulness of this data makes data mining imperative and

necessary.The essentials of data mining in finance are originating from the need to

adopt specific well organized criteria to predict exactness, facilitate multi-

resolution calculation.

 k-Nearest Neighbor Classifier (kNN)
K-nearest neighbor technique is a machine learning algorithm that is considered as
simple to implement (Aha et al. 1991). The stock prediction problem can be
mapped into a similarity based classification. The historical stock data and the test
data is mapped into a set of vectors. Each vector represents N dimension for each
stock features. Then, a similarity metric such as Euclidean distance is computed to
take a decision. In this section, a description of kNN is provided. kNN is
considered a lazy learning that does not build a model or function previously, but
yields the closest k records of the training data set that have the highest similarity
to the test (i.e. query record). Then, a majority vote is performed among the
selected k records to determine the class label and then assigned it to the query
record.

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

47

The prediction of stock market closing price is computed using kNN as follows:

1 Determine the number of nearest neighbors, k.
2 Compute the distance between the training samples and the query record.
c) Sort all training records according to the distance values.
d) Use a majority vote for the class labels of k nearest neighbors, and assign it as
a prediction value of the query record.

Basics of KNN

The KNN is the principal and most straightforward classification technique when

the information about the distribution of the data is insufficient. This convention

basically holds the whole training set during learning and allocates to every query a

class characterize by the majority label of its k-nearest neighbors in the training

set. The Nearest Neighbor (NN) principle is the least complex type of KNN when

K = 1.

In this algorithm every training samples ought to be grouped to its samples

surrounded by it. Subsequently, if the classification of any of the sample data is

obscure, then it could be anticipated by considering the classification of its nearest

neighbor tests. Given an obscure sample and a training set consisting of samples,

all the distances between the obscure sample and the entire sample in the training

set can be calculated by utilizing the accompanying mathematical statement where,

x1, x2, x3,xp are anticipators of the first sample and u1, u2,u3,… up are anticipators of

the second sample. If distance is of smallest value, then the samples in the training

set is close to the obscure sample. Hence, the obscure sample may be categorized

based on this nearest neighbor classification.

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

48

Fig 4.1 illustrates the KNN decision rule for K= 1 and K= 3 for a set of samples

divided into 2 classes.In Fig 4.1(a), an obscure sample (unknown sample) is

categorized by using only one known sample; In Fig 4.1(b) more than one known

sample is used. In the last case, the parameter K is set to 3, hence the closest three

samples is considered for classifying the obscure one. Two of them belong to the

same class, whereas only one belongs to the other class. In both cases, the

unknown sample is classified as belonging to the class on the left. Fig 4.2 shows

the pseudo code for the KNN algorithm

Pseudo code for KNN algorithm

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

49

Input: Finite set A , Finite Set B, k, function c:B->{1,2,….n}

Output: r:A->{1,2,…..n}

Begin

For each x in A do

Let L<- {}

For each b in B add (a(x,b), c(b)) to L

Sort the elements in L with the first components

Compute the class labels from the first k elements from L

Let r(x) be the class containing highest number of occurrences

End

Return r

End

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

50

The classifier performance is principally controlled by the decision of K and in

addition the distance metric applied [20-25]. This evaluation is influenced by

the sensitivity of the choosing the neighborhood size K, since local region

radius is calculated by the Kth nearest neighbor distance to the query and diverse

value of K yields various conditional class probabilities.

 Mathematical Calculations and Visualizations Models

This represents an overview of equations that were applied in this article for
predicting next day price. The calculations includes error estimation, total sum
of squared error, average error, cumulative closing price when sorted using
predicted values, k-values and training Root Mean Square (RMS) errors.

a) Root Mean Square Deviation (RMSD) is accuracy metric that computes
the differences between the estimated values, Y, and the actual values, X.
The total of RMSD is aggregated into a single value measure. RMSD =
SQRT(Y-X)2.

b) Explained Sum of Squares (ESS) is computed as follows:

ESS =
Where yi: is the predicted variable, and y is the actual value.

c) Average Estimated Error (AEE)
AEE is the total sum of RMS errors for all variables in stock records
divided by the total number of the records.
AEE =

Visualization Graph

To evaluate the performance of kNN learning model, lift graph is applied and
drawn for different companies’ stock values. The lift chart symbolizes the
enhancement that a data mining model offers when distinguished against a
random estimation, and the change is expressed in terms of lift score. Through
contrasting the lift scores for a variety of parts of the data set and for different
models, it can then be decided which model is supreme and which percentage of
the cases within the data set would gain from employing the predictions model.

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

51

Furthermore, using the lift chart assist in distinguishing how accurate
predictions are for various models with identical predictable characteristic. The
lift graph also shows the ratio between the results obtained using the predictive
model or not. The other graph applied is the plot curves to show the relation
between the actual and predicted stock price.

Prediction Performance Evaluations

Table 6 represents a summary of the total squared errors, RMS errors and the
average errors for the five companies. The residuals offer the differences
between the predicted values and actual the values in the sample data. The table
also shows that the values of errors are very small which indicate that the actual
value and predicted value are close. This yields a high accuracy of using the
kNN algorithm in predicting stock values.
.

Non-Linear Regression Results

Non-linear regression is a data analysis technique in which the observed data is
incorporated into a model presented in a mathematical non-linear function
combining the model parameters that relies on independent variables used.
GraphPad Prism v5.02 software was used to apply centered second order
polynomial (quadratic) non-linear regression which has the following formula:

Price = B0 + B1 (day – mean (day)) + B2 (day –
mean (day))

2
Where:
B0, B1 and B2: Constants.
Day: Actual day in which we will predict the price.
Price: Predicted price depending on the day.

 Kalman Filter:

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

52

In 1960, R. E. Kalman introduced a recursive algorithm to solve the linear
filtering and prediction problem using a state-space approach. The Kalman filter
is a linear, discrete-time system which provides a recursive solution to a
set of difference equations. The recursive nature of the Kalman filter requires
only the previous values of the state vector to be retained to produce future
estimates. This recursive algorithm makes the Kalman filter useful for
real-time applications. The state space format makes it easy to implement the
Kalman filter on a digital computer. The Kalman filter provides the optimum
estimate in a least squares sense of a random process which is being
sampled with noisy measurements.

 The Kalman filter can be used to "filter" the best estimate or
it can be used to forecast future values of the random process. The Kalman filter
models a process as the output of white noise passing through a linear system.
The states are selected such that the filter output is formed from the linear
combination of the states. A Kalman filter can also be used to model non-
stationary processes if a linear differential equation relating the process to white
noise can be determined. If the model parameters are time-varying, an adaptive
Kalman filter can often be used to estimate the non-stationary process.

Algorithm:

The Kalman filter is based on a discrete state space approach where the
random process is modeled by a state equation and a measurement equation
.

Xk+1 = «kXk + Hk
zk = HkSk + vk

For a process having a single noisy output and modeled using n internal states
and m white noise inputs, x is the n-dimensional state vector, w is the m-
dimensional white noise input vector, z is the noisy output measurement, and v
is the additive measurement noise. For the single output system, z and v are both
scalars. The other parameters in the state description are the state transition
matrix, and the connection vector, H. The (nxn) state transition matrix
describes the change in the states from tjj to tj^+i when there are no driving
functions, i.e., w = 0. The n-dimensional connection vector describes the linear
combination of states which comprise the output. The process and measurement
noise parameters, w and v, respectively, are uncorrelated white Gaussian
sequences with zero mean and variances (covariances) defined by:
E [wi*wjjT] r Qj^ i=k
0 ijlls.

E [vi*vk] = Rjj. i=k

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

53

0 i/k
E [wi*vij] = 0 for all i and k (3-4)
The values of Q and R are calculated prior to execution of the Kalman filter.
Each iteration of the Kalman filter is started with an a priori estimate, x"k,
which is the expected value of the
state just before assimilating the measurement. The estimation error, e'jj,
between the actual state, x^» and the a priori state estimate, x~je is defined by
(3-5). S"k = ak - A"k (3-5)
The estimation error is assumed to have zero mean and a covariance matrix,
defined as p-k = E[e-k g-k?] = EC(xk - S-k)(2Sk - x-k)T] (3-6) The P~1j matrix
describes the confidence level of the a priori state estimate accuracy. After the
current measurement, z^, the a priori state
estimate is updated to incorporate the measurement data. The a posteriori
estimate, xjj, is defined by the following update equation (3-7), Ak - A"k +
Ek(zk - HkÉ"k) (3-7)
where is the Kalman gain vector at time, t^. The n-dimensional Kalman gain
vector contains the weighting factors used to combine the new measurement
with the a priori estimate to achieve an optimal a posteriori estimate. An
optimum estimate minimizes the mean-square error of the updated estimate. The
Kalman gain vector which produces an optimal estimate takes into account the
confidence in the a priori estimate, P"k, and the reliability of the

measurement, Rk- The Kalman gain is given by (3-8).
Sk = P-kakT(HkP-kakT + Bk)-' (3-8)
With a scalar measurement, the inversion in the Kalman gain is just a scalar
inversion.
The error covariance matrix for the a posteriori state estimate is calculated from
Pk = (I - KkHk)P"k (3-9)
where I is an (n x n) identity matrix.
At this point, an updated state estimate and its error covariance matrix have
been calculated for the measurement at step k. To prepare for the next iteration
of the Kalman filter, an a priori state estimate, x"k+i, and an a priori error
covariance matrix, P~k+1> must be projected ahead from their a posteriori
estimates. *~k+l for the next measurement can be estimated by taking the
expected value of the state equation (3-la). Since the expected value
of wjj is zero, the a priori estimate becomes *"k+l = ®k*k • (3-10) The a priori
error covariance matrix is projected ahead by
P"k+1 = ^k^k^k"^ + Ok- (3-11)
The recursive Kalman filter algorithm consists of the
Kalman gain equation (3-8), state estimate (3-7) and error Govariance (3-9)
update equations, and state estimate (3-10)

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

54

and error covariance (3-11) projection equations. Initially, the Kalman filter
must be provided with an estimate of the state vector, xq", and its error
covariance matrix, Pq".

a block diagram of the Kalman filter" algorithm is shown in Figure 3-1.

The Kalman filter can also provide multiple step ahead forecasts. The N-step
ahead forecast equation is x"k+N = @k+N,kAk (3-12) where @k+N,k is the N-
step ahead transition matrix. This forecast equation is kept separate from the
recursive Kalman filter algorithm.

3. Objective of the Project:

i. Our project presents a computational approach for predicting the S&P CNX
Nifty 50 Index.

ii. An AI based model has been used in predicting the direction of the
movement of the closing value of the index.

iii. The model presented in the project also confirms that it can be used to
predict price index value of the stock market.

iv. After studying the various features of the AI model, an optimal model is
proposed for the purpose of forecasting.

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

55

v. The model has used the pre-processed data set of closing value of S&P CNX
Nifty 50 Index.

vi. The data set encompassed the trading days of a single company for the initial
development of the model. Work with a larger data set is planned in further
progress of the model.

vii. Accuracy of the performance of the AI model is compared using various
out of sample performance measures.

viii. This project examines the use of the Kalman filter to forecast intraday stock
and commodity prices.

ix. The price forecasts are based on a market's price history with no
external information included.

x. For the Kalman filter to produce beneficial forecasts, the market must not be
a random walk process, but must exhibit a statistically significant auto
correlation pattern which can be modeled.

xi. Once an appropriate Kalman filter model is determined, strategies for
increasing profits can be studied.

4. System Design:

 Hardware requirements:

 GPU: 4 x NVIDIA PASCAL GTX 1080Tis 11 GB

 CPU: Intel 3.8 GHz Core i7-6850K

 RAM: 64 GB DDR4-2666 System Memory

 Hard Disk Space: 1 TB SATA SSD for OS + 3 TB 7200 rpm HDD
for Long-term Data Storage.

 Cooling: Air cooling / Water cooling.

 Power Supply: 1400 to 1600 watts.

 Software requirements:

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

56

 Anaconda Navigator

 Jupyter Notebook

 Python 3 and different Python libraries, Deep Learning Libraries and
Sentiment analysis libraries such as:

 TensorFlow

 Keras

 scikit-learn

 numpy

 scipy

 nsepy

 pykalman

 pandas

 etc.

 Ubuntu 16.04 LTS OS

 Text editor

5. Methodology for implementation

(Formulation/Algorithm):

Support Vector Regression:

SVR Linear :

We are reading the dataset and putting them into an array for further operations
to be performed. We are interested in the closing price and the dates. So we read
those values accordingly.After we have our desired array we can start our
operations. We are putting our values through SVR Linear Classifier as

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

57

explained in the Review of Literature. Then we are getting our desired values.
We are then plotting a graph of it with the help of Matplotlib.

SVR Polynomial:

 We are reading the dataset and putting them into an array for further operations
to be performed. We are interested in the closing price and the dates. So we read
those values accordingly.After we have our desired array we can start our
operations. We are putting our values through SVR Polynomial Classifier as
explained in the Review of Literature. Then we are getting our desired values.
We are then plotting a graph of it with the help of Matplotlib.

SVR RBF:

 We are reading the dataset and putting them into an array for further operations
to be performed. We are interested in the closing price and the dates. So we read
those values accordingly.After we have our desired array we can start our
operations. We are putting our values through SVR RBF Classifier as explained
in the Review of Literature. Then we are getting our desired values. We are then plotting a

graph of it with the help of Matplotlib.

KNN METHODOLOGY:

K nearest neighbors is a simple algorithm that stores all available cases and
classifies new cases based on a similarity measure (e.g., distance functions).
KNN has been used in statistical estimation and pattern recognition.
A case is classified by a majority vote of its neighbors, with the case being
assigned to the class most common amongst its K nearest neighbors measured
by a distance function. If K = 1, then the case is simply assigned to the class of
its nearest neighbor.
Choosing the optimal value for K is best done by first inspecting the data. In
general, a large K value is more precise as it reduces the overall noise but there
is no guarantee. Cross-validation is another way to retrospectively determine a
good K value by using an independent dataset to validate the K value.
Historically, the optimal K for most datasets has been between 3-10. That
produces much better results than 1NN..
As an example, consider the following table of data points containing two
features:Now, given another set of data points (also called testing data), allocate

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

58

these points a group by analyzing the training set. Note that the unclassified
points are marked as ‘yellow’.

Intuition

If we plot these points on a graph, we may be able to locate some clusters, or
groups. Now, given an unclassified point, we can assign it to a group by
observing what group its nearest neighbours belong to. This means, a point
close to a cluster of points classified as ‘Red’ has a higher probability of getting
classified as ‘Red’.

Intuitively, we can see that the first point (2.5, 7) should be classified as ‘Blue’
and the second point (5.5, 4.5) should be classified as ‘Red’.

ALGORITHM:

1. Let m be the number of training data samples. Let p be an unknown point.

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

59

2. Store the training samples in an array of data points arr[]. This means
each element of this array represents a tuple (x, y).

3. for i=0 to m:

4. Calculate Euclidean distance d(arr[i], p).

5. Make set S of K smallest distances obtained. Each of these distances
correspond to an already classified data point.

6. Return the majority label among S.

K can be kept as an odd number so that we can calculate a clear majority in the
case where only two groups are possible (e.g. Red/Blue). With increasing K, we
get smoother, more defined boundaries across different classifications. Also, the
accuracy of the above classifier increases as we increase the number of data
points in the training set.

Reinforcement Learning and Sentiment Analysis(Random Forest

Model, Linear Regression Model, Multi Layer Perceptron or

Deep Neural Network Model):

In Reinforcement Learning, a model can learn from its past predictive ability,
giving itself a reward only for good behaviour, essentially self improving over
time:

 Reinforcement Learning

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

60

We’ll use the Sentiment from new headlines and historical price charts together
to predict future prices in Python, i.e., Sentiment Analysis +

Reinforcement Learning:

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

61

We’ll use two Machine Learning libraries for our problem:

The first is called NLTK(Natural Language Tool Kit) and the second is Scikit-

Learn.

The data set we’re using is the adjusted closing price gathered from the past 10
years for Microsoft stock. We’ll use 8 of these years for training and 2 of these
years for testing as well as a data set of the NYT articles’ headlines about
Microsoft for Sentiment Analysis:

MS-Data.csv:

Date,Open,High,Low,Close,Volume,Adj Close

2016-12-
30,19833.169922,19852.550781,19718.669922,19762.599609,271910000,1976
2.599609

2016-12-
29,19835.460938,19878.439453,19788.939453,19819.779297,172040000,1981
9.779297

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

62

2016-12-
28,19964.310547,19981.109375,19827.310547,19833.679688,188350000,1983
3.679688

2016-12-
27,19943.460938,19980.240234,19939.800781,19945.039062,158540000,1994
5.039062

2016-12-
23,19908.609375,19934.150391,19899.060547,19933.810547,158260000,1993
3.810547

2016-12-
22,19922.679688,19933.830078,19882.189453,19918.880859,258290000,1991
8.880859

2016-12-
21,19968.970703,19986.560547,19941.960938,19941.960938,256640000,1994
1.960938

2016-12-
20,19920.589844,19987.630859,19920.419922,19974.619141,284080000,1997
4.619141

2016-12-
19,19836.660156,19917.779297,19832.949219,19883.060547,302310000,1988
3.060547

2016-12-
16,19909.009766,19923.169922,19821.00,19843.410156,573470000,19843.41
0156

2016-12-
15,19811.50,19951.289062,19811.50,19852.240234,357350000,19852.240234

2016-12-
14,19876.130859,19966.429688,19748.669922,19792.529297,408430000,1979
2.529297

2016-12-
13,19852.210938,19953.75,19846.449219,19911.210938,388420000,19911.21
0938

……………………………………………….......

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

63

………………………………………………………………………

…………………………………………………………………………….

 NYT-Headlines-Data.pkl :

€cpandas.core.frame

DataFrame

q)• q}q (U
 _metadataq

]qU

_typqU dataframeqU_dataqcpandas.core.internals

BlockManager

q)• q

(]q
(cpandas.indexes.base

_new_Index

qcpandas.indexes.base

Index

q
}q

(U

dataqcnumpy.core.multiarray

_reconstruct

qcnumpy

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

64

ndarray

qK …Ub‡Rq(KK …cnumpy

dtype

qUO8K
K‡Rq(K U|NNNJÿÿÿÿJÿÿÿÿK?tb‰]q(UcloseqU adj
closeqUarticlesqetbU

nameqNu†Rqcpandas.tseries.index

_new_DatetimeIndex

qcpandas.tseries.index

DatetimeIndex

q}q(Utzq-NU

freqqcpandas.tseries.offsets

Day

q)• q!}q"(U normalizeq#‰U_offsetq$cdatetime

timedelta

…………………………………….

……………………………………………

…………………………………………………………..

We’ve used pandas data processing tool to combine both datasets into one
dataframe:

Reading the saved data pickle file

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

65

df_stocks = pd.read_pickle('/Users/Dinesh/Documents/Project Stock

predictions/data/pickled_ten_year_filtered_data.pkl')

df_stocks['prices'] = df_stocks['adj close'].apply(np.int64)

selecting the prices and articles

df_stocks = df_stocks[['prices', 'articles']]

df_stocks['articles'] = df_stocks['articles'].map(lambda x: x.lstrip('.-'))

We are next going to perform Sentiment Analysis on these headlines from the
NYT. So, we use the sentiment intensity analyzer :

Adding new columns to the data frame

df["compound"] = ''

df["neg"] = ''

df["neu"] = ''

df["pos"] = ''

This will output sentiment scores for four classes of sentiments: Negative,
Neural, Positive and Compound, which is the aggregated score.:

from nltk.sentiment.vader import SentimentIntensityAnalyzer

import unicodedata

sid = SentimentIntensityAnalyzer()

for date, row in df_stocks.T.iteritems():

 try:

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

66

 sentence = unicodedata.normalize('NFKD', df_stocks.loc[date,

'articles']).encode('ascii','ignore')

 ss = sid.polarity_scores(sentence)

 df.set_value(date, 'compound', ss['compound'])

 df.set_value(date, 'neg', ss['neg'])

 df.set_value(date, 'neu', ss['neu'])

 df.set_value(date, 'pos', ss['pos'])

 except TypeError:

 print df_stocks.loc[date, 'articles']

 print date

There are actually several popular sentiment lexicons out there. They are made
manually by humans and pattern recognition algorithms use them to summarize
the polarities of entire documents:

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

67

We’ll first try out a Random Forest Model:

from treeinterpreter import treeinterpreter as ti

from sklearn.tree import DecisionTreeRegressor

from sklearn.ensemble import RandomForestRegressor

from sklearn.metrics import classification_report,confusion_matrix

rf = RandomForestRegressor()

rf.fit(numpy_df_train, y_train)

 Random Forest Model

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

68

The second model we use in Linear Regression which will draw the line of best
fit between our variables:

from treeinterpreter import treeinterpreter as ti

from sklearn.tree import DecisionTreeRegressor

from sklearn.ensemble import RandomForestRegressor

from sklearn.linear_model import LogisticRegression

from datetime import datetime, timedelta

average_upcoming_5_days_predicted += predictions_df.loc[temp_date,

'prices']

Converting string to date time

temp_date = datetime.strptime(temp_date, "%Y-%m-%d").date()

Adding one day from date time

difference = temp_date + timedelta(days=1)

Converting again date time to string

temp_date = difference.strftime('%Y-%m-%d')

start_year = datetime.strptime(train_start_date, "%Y-%m-

%d").date().month

years = [2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016]

prediction_list = []

for year in years:

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

69

 # Splitting the training and testing data

 train_start_date = str(year) + '-01-01'

 train_end_date = str(year) + '-10-31'

 test_start_date = str(year) + '-11-01'

 test_end_date = str(year) + '-12-31'

 train = df.ix[train_start_date : train_end_date]

 test = df.ix[test_start_date:test_end_date]

 # Calculating the sentiment score

 sentiment_score_list = []

 for date, row in train.T.iteritems():

 sentiment_score = np.asarray([df.loc[date, 'compound'],df.loc[date,

'neg'],df.loc[date, 'neu'],df.loc[date, 'pos']])

 #sentiment_score = np.asarray([df.loc[date, 'neg'],df.loc[date, 'pos']])

 sentiment_score_list.append(sentiment_score)

 numpy_df_train = np.asarray(sentiment_score_list)

 sentiment_score_list = []

 for date, row in test.T.iteritems():

 sentiment_score = np.asarray([df.loc[date, 'compound'],df.loc[date,

'neg'],df.loc[date, 'neu'],df.loc[date, 'pos']])

 #sentiment_score = np.asarray([df.loc[date, 'neg'],df.loc[date, 'pos']])

 sentiment_score_list.append(sentiment_score)

 numpy_df_test = np.asarray(sentiment_score_list)

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

70

 # Generating models

 lr = LogisticRegression()

 lr.fit(numpy_df_train, train['prices'])

 prediction = lr.predict(numpy_df_test)

 prediction_list.append(prediction)

 #print train_start_date + ' ' + train_end_date + ' ' + test_start_date + ' '

+ test_end_date

 idx = pd.date_range(test_start_date, test_end_date)

 #print year

 predictions_df_list = pd.DataFrame(data=prediction[0:], index = idx,

columns=['prices'])

 difference_test_predicted_prices = offset_value(test_start_date, test,

predictions_df_list)

 # Adding offset to all the advpredictions_df price values

 predictions_df_list['prices'] = predictions_df_list['prices'] +

difference_test_predicted_prices

 predictions_df_list

 # Smoothing the plot

 predictions_df_list['ewma'] = pd.ewma(predictions_df_list["prices"],

span=10, freq="D")

 predictions_df_list['actual_value'] = test['prices']

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

71

 predictions_df_list['actual_value_ewma'] =

pd.ewma(predictions_df_list["actual_value"], span=10, freq="D")

 # Changing column names

 predictions_df_list.columns = ['predicted_price',

'average_predicted_price', 'actual_price', 'average_actual_price']

 predictions_df_list.plot()

 predictions_df_list_average =

predictions_df_list[['average_predicted_price', 'average_actual_price']]

 predictions_df_list_average.plot()

predictions_df_list.show()

The third model we use is a Multi Layer Perceptron(MLP) classifier, also called
a Neural Network:

from sklearn.neural_network import MLPClassifier

from datetime import datetime, timedelta

average_upcoming_5_days_predicted += predictions_df.loc[temp_date,

'prices']

Converting string to date time

temp_date = datetime.strptime(temp_date, "%Y-%m-%d").date()

Adding one day from date time

difference = temp_date + timedelta(days=1)

Converting again date time to string

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

72

temp_date = difference.strftime('%Y-%m-%d')

start_year = datetime.strptime(train_start_date, "%Y-%m-

%d").date().month

years = [2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016]

prediction_list = []

for year in years:

 # Splitting the training and testing data

 train_start_date = str(year) + '-01-01'

 train_end_date = str(year) + '-10-31'

 test_start_date = str(year) + '-11-01'

 test_end_date = str(year) + '-12-31'

 train = df.ix[train_start_date : train_end_date]

 test = df.ix[test_start_date:test_end_date]

 # Calculating the sentiment score

 sentiment_score_list = []

 for date, row in train.T.iteritems():

 sentiment_score = np.asarray([df.loc[date, 'compound'],df.loc[date,

'neg'],df.loc[date, 'neu'],df.loc[date, 'pos']])

 #sentiment_score = np.asarray([df.loc[date, 'neg'],df.loc[date, 'pos']])

 sentiment_score_list.append(sentiment_score)

 numpy_df_train = np.asarray(sentiment_score_list)

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

73

 sentiment_score_list = []

 for date, row in test.T.iteritems():

 sentiment_score = np.asarray([df.loc[date, 'compound'],df.loc[date,

'neg'],df.loc[date, 'neu'],df.loc[date, 'pos']])

 #sentiment_score = np.asarray([df.loc[date, 'neg'],df.loc[date, 'pos']])

 sentiment_score_list.append(sentiment_score)

 numpy_df_test = np.asarray(sentiment_score_list)

 # Generating models

 mlpc = MLPClassifier(hidden_layer_sizes=(100, 200, 100),

activation='relu',

 solver='lbfgs', alpha=0.005, learning_rate_init = 0.001,

shuffle=False) # span = 20 # best 1

 mlpc.fit(numpy_df_train, train['prices'])

 prediction = mlpc.predict(numpy_df_test)

 prediction_list.append(prediction)

 #print train_start_date + ' ' + train_end_date + ' ' + test_start_date + ' '

+ test_end_date

 idx = pd.date_range(test_start_date, test_end_date)

 #print year

 predictions_df_list = pd.DataFrame(data=prediction[0:], index = idx,

columns=['prices'])

 difference_test_predicted_prices = offset_value(test_start_date, test,

predictions_df_list)

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

74

 # Adding offset to all the advpredictions_df price values

 predictions_df_list['prices'] = predictions_df_list['prices'] +

difference_test_predicted_prices

 predictions_df_list

 # Smoothing the plot

 predictions_df_list['ewma'] = pd.ewma(predictions_df_list["prices"],

span=20, freq="D")

 predictions_df_list['actual_value'] = test['prices']

 predictions_df_list['actual_value_ewma'] =

pd.ewma(predictions_df_list["actual_value"], span=20, freq="D")

 # Changing column names

 predictions_df_list.columns = ['predicted_price',

'average_predicted_price', 'actual_price', 'average_actual_price']

 predictions_df_list.plot()

 predictions_df_list_average =

predictions_df_list[['average_predicted_price', 'average_actual_price']]

 predictions_df_list_average.plot()

predictions_df_list.show()

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

75

 Fig.: Multi Layer Perceptron Or Deep Neural Network

We’ll input our data on the three initialized models and observe the results in
graph for each of them:

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

76

As we can see above, the Random Forest Model doesn’t look nice, it’s pretty
off.

The Linear Regression Model looks a little bit better, but it is still pretty bad.

But the MLP Classifier looks the best of all of them.

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

77

Deep Learning Model:

 Here we’ll build a Deep Learning model to predict stock prices using Keras
with TensorFlow backend. For our training data, we’ll be using the daily closing
price of the S&P 500 from January 2000 to August 2016.

sp500.csv :

1455.219971

1399.420044

1402.109985

1403.449951

1441.469971

1457.599976

1438.560059

1432.25

1449.680054

1465.150024

1455.140015

1455.900024

1445.569946

1441.359985

1401.530029

1410.030029

1404.089966

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

78

1398.560059

1360.160034

1394.459961

1409.280029

1409.119995

1424.969971

.

.

.

.

This is a series of data points indexed in time-order or a time series. Our goal
will be to predict the closing price for any given day after training.

We can load our data using a custom load_data() function:

X_train, y_train, X_test, y_test = lstm.load_data('sp500.csv', 50, True)

It essestially just reads our .csv file into an array of values and normalizes
them. Rather than feeding those values directly to our models, normalizing them
improves convergence.

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

79

We use the following equation to normalize each value to reflect percentage
changes from the starting point:

Where, pi = each price

 P0 = initial price

 Ni = normalized each price

So, we divide each price by the initial price and subtract 1 to get the normalized
price. When our model later makes prediction, we’ll denormalize the data using
the following formula to get a real world number out of it:

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

80

To build our model, we’ll first initialize it as sequential since it’ll be a linear
stack of layers. Then we’lll add our first layer which is an LSTM layer:

#Step-2 Build model

model = Sequential()

model.add(LSTM(

 input_dim = 1,

 output_dim = 50,

 return_sequences = True))

model.add(Dropout(0.2))

So, what’s LSTM?

It’s easy to record the words(of a song) forward. But could we sing them
backwards? No. The reason is, we learn these words in a sequence: it’s
Conditional Meomory. We can access the words if we could access the
words before it:

Memory matters when we have sequences. Our thoughts have persistence, but
Feed-Forward Neural Networks don’t.:

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

81

Feed-Forward Neural Networks accept a fixed size vector as input, like an
image. So, we could not use it to predict next frame in a movie, because, that
would require a series of image vectors as inputs, not just one, since the
probability of a certain event happening will depend on every frame that
happened before it:

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

82

We need a way to allow information to persist. And that’s why we’ll use a
Recurrent Neural Network(RNN). RNNs can accept a series of vectors as
inputs.:

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

83

In Feed-Forward Neural Networks, the hidden layers’ weights are based only on
the input data:

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

84

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

85

But, in an RNN, the hidden layer is a combination of the input data at the
current time-step and the hidden layer at a previous time-step:

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

86

The hidden layer is constantly changing as it gets more inputs and the only way
to reach these hidden states is with the correct sequence of inputs. This is how
memory is incorporated:

And we can model this process mathematically:

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

87

Where, ht = hidden time layer at a given time-step
 w = weight matrix
 xt = input at that same time-step
 ht-1 = hidden state of previous time-step
 U = own hidden state to hidden state matrix(or, transition matrix)

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

88

So, this hidden-step at a given time-step is a function of the input at the same
time-step, modified by a weight-matrix(like the ones used in feed-forward
networks) , added to the hidden states of the previous time-step, multiplied by
its own hidden-state to hidden-state matrix(otherwise known as transition
matrix).

And because this feedback loop is recurrent at every time-step in the series,
each hidden-state has traces left. Not only of the previous hidden states, but also
of all of those that preceded it. That’s why we call it recurrent:

In a way, we think of it as copies of the same network, each passing a message
to the next:

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

89

So, that’s the great thing about RNN: they’re able to connect previous data with
the present task-

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

90

But we still have a problem: in regular RNNs, memories become more weaken
as they’re fed into the past:

, since the error signal from later time-steps doesn’t make far enough back in
time to influence the network at earlier time-steps during Back-Propagation.
Yoshua Bengio called it the “Vanishing Gradient Problem”, in one of his
most cited papers called “Learning Long-Term Dependencies with Gradient

Descent is Difficult”.

A popular solution to this is Long Short Term Memory(LSTM):

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

91

Normally, Neurons are units that apply Activation Function, like a Sigmoid,
to a linear combination of the inputs. We instead replace these Neurons in an
LSTM RNN, which are called Memory Cells:

So, despite everything else in an RNN staying the same, doing this more
powerful Update Equation for our Hidden-State results in our network being
able to remember Long-Term Dependencies:

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

92

So, for our LSTM layer, we’ll set our input dimension to 1, and say we want 50
units in this layer. Setting return sequences to True, means this layer’s output is
always fed to the next layer. We’ll add 20% dropout to this layer:

model.add(LSTM(

 input_dim = 1,

 output_dim = 50,

 return_sequences = True))

model.add(Dropout(0.2))

We’ll initialize our Second Layer as another LSTM with 100 units and set
return sequence to False:

model.add(LSTM(

 100,

 return_sequences = False))

model.add(Dropout(0.2))

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

93

We use linear dense layer to aggregate the data from this prediction vector into
one single value:

model.add(Dense(

 output_dim = 1))

model.add(Activation('linear'))

Then we can compile our model using a popular loss function called “Mean

Square Function”:

start = time.time()

model.compile(loss = 'mse', optimizer = 'rmsprop')

print('Compilation time: ', time.time() - start)

We’ll train our model the fit() function:

#Step-3 train the model

model.fit(

 X_train,

 y_train,

 batch_size = 512,

 nb_epoch = 1,

 validation_split = 0.05)

Then we can test it to see what it predicts for the next 50 steps:

#Step-4 plot the predictions!
predictions = lstm.predict_sequences_multiple(model, X_test, 50, 50)
run.plot_results_multiple(predictions, y_test, 50)

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

94

Implementation of Kalman Filter Estimation of Mean in Python

using PyKalman, Bokeh and NSEPy:

Kalman Filter is an optimal estimation algorithm to estimate the variable
which can be measured indirectly and to find the best estimate of states by
combining measurement from various sensors in the presence of noise.
When comes to implementation of Kalman filter python comes very handy as the
librry PyKalman makes life easier rather than digging with complex math stuff
to calculate kalman estimation.

6. Implementation Details:

Decision Tree:

from sklearn import tree

features= [[177.85, 2987], [175.11, 3088], [177.07, 1081]]

label= [175.85, 177.85, 176.5]

clf= tree.DecisionTreeClassifier()

clf=clf.fit(features, label)

print (clf.predict([[180, 1587]]))

KNN METHODOLOGY:

Python3 program to find groups of unknown
Points using K nearest neighbour algorithm.

import math

def classifyAPoint(points,p,k=3):

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

95

 '''
 This function finds classification of p using
 k nearest neighbour algorithm. It assumes only two
 groups and returns 0 if p belongs to group 0, else
 1 (belongs to group 1).

 Parameters -
 points : Dictionary of training points having two keys - 0 and 1
 Each key have a list of training data points belong to that

 p : A touple ,test data point of form (x,y)

 k : number of nearest neighbour to consider, default is 3
 '''

 distance=[]
 for group in points:
 for feature in points[group]:

 #calculate the euclidean distance of p from training points
 euclidean_distance = math.sqrt((feature[0]-p[0])**2 +(feature[1]-
p[1])**2)

 # Add a touple of form (distance,group) in the distance list
 distance.append((euclidean_distance,group))

 # sort the distance list in ascending order
 # and select first k distances
 distance = sorted(distance)[:k]

 freq1 = 0 #frequency of group 0
 freq2 = 0 #frequency og group 1

 for d in distance:
 if d[1] == 0:
 freq1 += 1
 elif d[1] == 1:
 freq2 += 1

 return 0 if freq1>freq2 else 1

driver function

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

96

def main():

 # Dictionary of training points having two keys - 0 and 1
 # key 0 have points belong to class 0
 # key 1 have points belong to class 1

 points = {0:[(1,12),(2,5),(3,6),(3,10),(3.5,8),(2,11),(2,9),(1,7)],
 1:[(5,3),(3,2),(1.5,9),(7,2),(6,1),(3.8,1),(5.6,4),(4,2),(2,5)]}

 # testing point p(x,y)
 p = (2.5,7)

 # Number of neighbours
 k = 3

 print("The value classified to unknown point is: {}".\
 format(classifyAPoint(points,p,k)))

if __name__ == '__main__':
 main()

Support Vector Regression:

import csv

import numpy as np

from sklearn.svm import SVR

import matplotlib.pyplot as plt

dates = []

prices = []

print("Hello")

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

97

def get_data(filename):

 with open(filename, 'r') as csvfile:

 csvFileReader = csv.reader(csvfile)

 next(csvFileReader)

 for row in csvFileReader:

 dates.append(int(row[0].split('-')[2]))

 prices.append(float(row[1]))

 return

def predict_prices(dates, prices, x):

 dates = np.reshape(dates,(len(dates), 1))

 #print(dates)

 svr_lin = SVR(kernel= 'linear', C=1e3)

 svr_poly = SVR(kernel= 'poly', C=1e3, degree = 2)

 svr_rbf = SVR(kernel= 'rbf', C=1e3, gamma=0.1)

 svr_lin.fit(dates, prices)

 svr_poly.fit(dates, prices)

 svr_rbf.fit(dates, prices)

 plt.scatter(dates, prices, color='black', label='Data')

 plt.plot(dates, svr_rbf.predict(dates), color='red', label='RBF model')

 plt.plot(dates, svr_lin.predict(dates), color='green', label='Linear model')

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

98

 plt.plot(dates, svr_poly.predict(dates), color='blue', label='Polynomial
model')

 plt.xlabel('Date')

 plt.ylabel('Price')

 plt.title('Support Vector Regression')

 plt.legend()

 plt.show()

 print("Show end")

 return svr_rbf.predict(x)[0], svr_lin.predict(x)[0], svr_poly.predict(x)[0]

get_data('AAPL.csv')

predicted_price = predict_prices(dates, prices, 29)

print(predicted_price)

Deep Learning Model:

from keras.layers.core import Dense, Activation, Dropout
from keras.layers.recurrent import LSTM
from keras.models import Sequential
import lstm, run, time #helper libraries

#Step-1 Load data

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

99

X_train, y_train, X_test, y_test = lstm.load_data('sp500.csv', 50, True)
print(X_train)

#Step-2 Build model
model = Sequential()

model.add(LSTM(
 input_dim = 1,
 output_dim = 50,
 return_sequences = True))
model.add(Dropout(0.2))

model.add(LSTM(
 100,
 return_sequences = False))
model.add(Dropout(0.2))

model.add(Dense(
 output_dim = 1))
model.add(Activation('linear'))

start = time.time()
model.compile(loss = 'mse', optimizer = 'rmsprop')
print('Compilation time: ', time.time() - start)

#Step-3 train the model
model.fit(
 X_train,
 y_train,
 batch_size = 512,
 nb_epoch = 1,
 validation_split = 0.05)

#Step-4 plot the predictions!
predictions = lstm.predict_sequences_multiple(model, X_test, 50, 50)
run.plot_results_multiple(predictions, y_test, 50)

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

100

Reinforcement Learning and Sentiment Analysis(Random Forest

Model, Linear Regression Model, Multi Layer Perceptron or

Deep Neural Network Model):

import numpy as np
import pandas as pd
from nltk.classify import NaiveBayesClassifier
from nltk.corpus import subjectivity
from nltk.sentiment import SentimentAnalyzer
from nltk.sentiment.util import *

Reading the saved data pickle file
df_stocks = pd.read_pickle('/Users/Dinesh/Documents/Project Stock
predictions/data/pickled_ten_year_filtered_data.pkl')

df_stocks

df_stocks['prices'] = df_stocks['adj close'].apply(np.int64)

selecting the prices and articles
df_stocks = df_stocks[['prices', 'articles']]

df_stocks['articles'] = df_stocks['articles'].map(lambda x: x.lstrip('.-'))
df_stocks

df = df_stocks[['prices']].copy()
df

Adding new columns to the data frame
df["compound"] = ''
df["neg"] = ''
df["neu"] = ''
df["pos"] = ''

df

from nltk.sentiment.vader import SentimentIntensityAnalyzer
import unicodedata
sid = SentimentIntensityAnalyzer()
for date, row in df_stocks.T.iteritems():
 try:

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

101

 sentence = unicodedata.normalize('NFKD', df_stocks.loc[date,
'articles']).encode('ascii','ignore')
 ss = sid.polarity_scores(sentence)
 df.set_value(date, 'compound', ss['compound'])
 df.set_value(date, 'neg', ss['neg'])
 df.set_value(date, 'neu', ss['neu'])
 df.set_value(date, 'pos', ss['pos'])
 except TypeError:
 print df_stocks.loc[date, 'articles']
 print date

df

train_start_date = '2007-01-01'
train_end_date = '2014-12-31'
test_start_date = '2015-01-01'
test_end_date = '2016-12-31'
train = df.ix[train_start_date : train_end_date]
test = df.ix[test_start_date:test_end_date]

sentiment_score_list = []
for date, row in train.T.iteritems():
 #sentiment_score = np.asarray([df.loc[date, 'compound'],df.loc[date,
'neg'],df.loc[date, 'neu'],df.loc[date, 'pos']])
 sentiment_score = np.asarray([df.loc[date, 'neg'],df.loc[date, 'pos']])
 sentiment_score_list.append(sentiment_score)
numpy_df_train = np.asarray(sentiment_score_list)
sentiment_score_list = []
for date, row in test.T.iteritems():
 #sentiment_score = np.asarray([df.loc[date, 'compound'],df.loc[date,
'neg'],df.loc[date, 'neu'],df.loc[date, 'pos']])
 sentiment_score = np.asarray([df.loc[date, 'neg'],df.loc[date, 'pos']])
 sentiment_score_list.append(sentiment_score)
numpy_df_test = np.asarray(sentiment_score_list)

y_train = pd.DataFrame(train['prices'])
y_test = pd.DataFrame(test['prices'])

from treeinterpreter import treeinterpreter as ti
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import classification_report,confusion_matrix

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

102

rf = RandomForestRegressor()
rf.fit(numpy_df_train, y_train)

print rf.feature_importances_

prediction, bias, contributions = ti.predict(rf, numpy_df_test)

prediction

contributions

import matplotlib.pyplot as plt
%matplotlib inline

idx = pd.date_range(test_start_date, test_end_date)
predictions_df = pd.DataFrame(data=prediction[0:], index = idx,
columns=['prices'])

predictions_df

#predictions_df.plot()
#test['prices'].plot()

predictions_plot = predictions_df.plot()

fig = y_test.plot(ax = predictions_plot).get_figure()
fig.savefig("graphs/random forest without smoothing.png")

ax = predictions_df.rename(columns={"prices":
"predicted_price"}).plot(title='Random Forest predicted prices 8-2 years')
ax.set_xlabel("Dates")
ax.set_ylabel("Stock Prices")
fig = y_test.rename(columns={"prices": "actual_price"}).plot(ax =
ax).get_figure()
fig.savefig("graphs/random forest without smoothing.png")

colors = ['332288', '88CCEE', '44AA99', '117733', '999933', 'DDCC77',
'CC6677', '882255', 'AA4499']

test

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

103

from datetime import datetime, timedelta

temp_date = test_start_date
average_last_5_days_test = 0
total_days = 10
for i in range(total_days):
 average_last_5_days_test += test.loc[temp_date, 'prices']
 # Converting string to date time
 temp_date = datetime.strptime(temp_date, "%Y-%m-%d").date()
 # Reducing one day from date time
 difference = temp_date + timedelta(days=1)
 # Converting again date time to string
 temp_date = difference.strftime('%Y-%m-%d')
 #print temp_date
average_last_5_days_test = average_last_5_days_test / total_days
print average_last_5_days_test

temp_date = test_start_date
average_upcoming_5_days_predicted = 0
for i in range(total_days):
 average_upcoming_5_days_predicted += predictions_df.loc[temp_date,
'prices']
 # Converting string to date time
 temp_date = datetime.strptime(temp_date, "%Y-%m-%d").date()
 # Adding one day from date time
 difference = temp_date + timedelta(days=1)
 # Converting again date time to string
 temp_date = difference.strftime('%Y-%m-%d')
 print temp_date
average_upcoming_5_days_predicted = average_upcoming_5_days_predicted /
total_days
print average_upcoming_5_days_predicted
#average train.loc['2013-12-31', 'prices'] - advpredictions_df.loc['2014-01-01',
'prices']
difference_test_predicted_prices = average_last_5_days_test -
average_upcoming_5_days_predicted
print difference_test_predicted_prices

from datetime import datetime, timedelta

temp_date = test_start_date
average_last_5_days_test = 0

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

104

total_days = 10
for i in range(total_days):
 average_last_5_days_test += test.loc[temp_date, 'prices']
 # Converting string to date time
 temp_date = datetime.strptime(temp_date, "%Y-%m-%d").date()
 # Reducing one day from date time
 difference = temp_date + timedelta(days=1)
 # Converting again date time to string
 temp_date = difference.strftime('%Y-%m-%d')
 #print temp_date
average_last_5_days_test = average_last_5_days_test / total_days
print average_last_5_days_test

temp_date = test_start_date
average_upcoming_5_days_predicted = 0
for i in range(total_days):
 average_upcoming_5_days_predicted += predictions_df.loc[temp_date,
'prices']
 # Converting string to date time
 temp_date = datetime.strptime(temp_date, "%Y-%m-%d").date()
 # Adding one day from date time
 difference = temp_date + timedelta(days=1)
 # Converting again date time to string
 temp_date = difference.strftime('%Y-%m-%d')
 print temp_date
average_upcoming_5_days_predicted = average_upcoming_5_days_predicted /
total_days
print average_upcoming_5_days_predicted
#average train.loc['2013-12-31', 'prices'] - advpredictions_df.loc['2014-01-01',
'prices']
difference_test_predicted_prices = average_last_5_days_test -
average_upcoming_5_days_predicted
print difference_test_predicted_prices

Adding 6177 to all the advpredictions_df price values
predictions_df['prices'] = predictions_df['prices'] +
difference_test_predicted_prices
predictions_df

ax = predictions_df.rename(columns={"prices":
"predicted_price"}).plot(title='Random Forest predicted prices 8-2 years after
aligning')

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

105

ax.set_xlabel("Dates")
ax.set_ylabel("Stock Prices")
fig = y_test.rename(columns={"prices": "actual_price"}).plot(ax =
ax).get_figure()
fig.savefig("graphs/random forest with aligning.png")

predictions_df

predictions_df['ewma'] = pd.ewma(predictions_df["prices"], span=60,
freq="D")

predictions_df

 predictions_df['actual_value'] = test['prices']
predictions_df['actual_value_ewma'] =
pd.ewma(predictions_df["actual_value"], span=60, freq="D")

predictions_df

Changing column names
predictions_df.columns = ['predicted_price', 'average_predicted_price',
'actual_price', 'average_actual_price']

Now plotting test predictions after smoothing
predictions_plot = predictions_df.plot(title='Random Forest predicted prices 8-2
years after aligning & smoothing')
predictions_plot.set_xlabel("Dates")
predictions_plot.set_ylabel("Stock Prices")
fig = predictions_plot.get_figure()
fig.savefig("graphs/random forest after smoothing.png")

Plotting just predict and actual average curves
predictions_df_average = predictions_df[['average_predicted_price',
'average_actual_price']]
predictions_plot = predictions_df_average.plot(title='Random Forest 8-2 years
after aligning & smoothing')
predictions_plot.set_xlabel("Dates")
predictions_plot.set_ylabel("Stock Prices")
fig = predictions_plot.get_figure()
fig.savefig("graphs/random forest after smoothing 2.png")

def offset_value(test_start_date, test, predictions_df):

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

106

 temp_date = test_start_date
 average_last_5_days_test = 0
 average_upcoming_5_days_predicted = 0
 total_days = 10
 for i in range(total_days):
 average_last_5_days_test += test.loc[temp_date, 'prices']
 temp_date = datetime.strptime(temp_date, "%Y-%m-%d").date()
 difference = temp_date + timedelta(days=1)
 temp_date = difference.strftime('%Y-%m-%d')
 average_last_5_days_test = average_last_5_days_test / total_days

 temp_date = test_start_date
 for i in range(total_days):
 average_upcoming_5_days_predicted += predictions_df.loc[temp_date,
'prices']
 temp_date = datetime.strptime(temp_date, "%Y-%m-%d").date()
 difference = temp_date + timedelta(days=1)
 temp_date = difference.strftime('%Y-%m-%d')
 average_upcoming_5_days_predicted =
average_upcoming_5_days_predicted / total_days
 difference_test_predicted_prices = average_last_5_days_test -
average_upcoming_5_days_predicted
 return difference_test_predicted_prices

from treeinterpreter import treeinterpreter as ti
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.linear_model import LogisticRegression
from datetime import datetime, timedelta

average_upcoming_5_days_predicted += predictions_df.loc[temp_date,
'prices']
Converting string to date time
temp_date = datetime.strptime(temp_date, "%Y-%m-%d").date()
Adding one day from date time
difference = temp_date + timedelta(days=1)
Converting again date time to string
temp_date = difference.strftime('%Y-%m-%d')

start_year = datetime.strptime(train_start_date, "%Y-%m-%d").date().month

years = [2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016]

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

107

prediction_list = []
for year in years:
 # Splitting the training and testing data
 train_start_date = str(year) + '-01-01'
 train_end_date = str(year) + '-10-31'
 test_start_date = str(year) + '-11-01'
 test_end_date = str(year) + '-12-31'
 train = df.ix[train_start_date : train_end_date]
 test = df.ix[test_start_date:test_end_date]

 # Calculating the sentiment score
 sentiment_score_list = []
 for date, row in train.T.iteritems():
 sentiment_score = np.asarray([df.loc[date, 'compound'],df.loc[date,
'neg'],df.loc[date, 'neu'],df.loc[date, 'pos']])
 #sentiment_score = np.asarray([df.loc[date, 'neg'],df.loc[date, 'pos']])
 sentiment_score_list.append(sentiment_score)
 numpy_df_train = np.asarray(sentiment_score_list)
 sentiment_score_list = []
 for date, row in test.T.iteritems():
 sentiment_score = np.asarray([df.loc[date, 'compound'],df.loc[date,
'neg'],df.loc[date, 'neu'],df.loc[date, 'pos']])
 #sentiment_score = np.asarray([df.loc[date, 'neg'],df.loc[date, 'pos']])
 sentiment_score_list.append(sentiment_score)
 numpy_df_test = np.asarray(sentiment_score_list)

 # Generating models
 lr = LogisticRegression()
 lr.fit(numpy_df_train, train['prices'])

 prediction = lr.predict(numpy_df_test)
 prediction_list.append(prediction)
 #print train_start_date + ' ' + train_end_date + ' ' + test_start_date + ' ' +
test_end_date
 idx = pd.date_range(test_start_date, test_end_date)
 #print year
 predictions_df_list = pd.DataFrame(data=prediction[0:], index = idx,
columns=['prices'])

 difference_test_predicted_prices = offset_value(test_start_date, test,
predictions_df_list)

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

108

 # Adding offset to all the advpredictions_df price values
 predictions_df_list['prices'] = predictions_df_list['prices'] +
difference_test_predicted_prices
 predictions_df_list

 # Smoothing the plot
 predictions_df_list['ewma'] = pd.ewma(predictions_df_list["prices"],
span=10, freq="D")
 predictions_df_list['actual_value'] = test['prices']
 predictions_df_list['actual_value_ewma'] =
pd.ewma(predictions_df_list["actual_value"], span=10, freq="D")
 # Changing column names
 predictions_df_list.columns = ['predicted_price', 'average_predicted_price',
'actual_price', 'average_actual_price']
 predictions_df_list.plot()
 predictions_df_list_average = predictions_df_list[['average_predicted_price',
'average_actual_price']]
 predictions_df_list_average.plot()

predictions_df_list.show()

lr.classes_

lr.coef_[0]

from treeinterpreter import treeinterpreter as ti
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.linear_model import LogisticRegression
from datetime import datetime, timedelta

average_upcoming_5_days_predicted += predictions_df.loc[temp_date,
'prices']
Converting string to date time
temp_date = datetime.strptime(temp_date, "%Y-%m-%d").date()
Adding one day from date time
difference = temp_date + timedelta(days=1)
Converting again date time to string
temp_date = difference.strftime('%Y-%m-%d')

start_year = datetime.strptime(train_start_date, "%Y-%m-%d").date().month

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

109

years = [2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016]
prediction_list = []
for year in years:
 # Splitting the training and testing data
 train_start_date = str(year) + '-01-01'
 train_end_date = str(year) + '-10-31'
 test_start_date = str(year) + '-11-01'
 test_end_date = str(year) + '-12-31'
 train = df.ix[train_start_date : train_end_date]
 test = df.ix[test_start_date:test_end_date]

 # Calculating the sentiment score
 sentiment_score_list = []
 for date, row in train.T.iteritems():
 sentiment_score = np.asarray([df.loc[date, 'compound'],df.loc[date,
'neg'],df.loc[date, 'neu'],df.loc[date, 'pos']])
 #sentiment_score = np.asarray([df.loc[date, 'neg'],df.loc[date, 'pos']])
 sentiment_score_list.append(sentiment_score)
 numpy_df_train = np.asarray(sentiment_score_list)
 sentiment_score_list = []
 for date, row in test.T.iteritems():
 sentiment_score = np.asarray([df.loc[date, 'compound'],df.loc[date,
'neg'],df.loc[date, 'neu'],df.loc[date, 'pos']])
 #sentiment_score = np.asarray([df.loc[date, 'neg'],df.loc[date, 'pos']])
 sentiment_score_list.append(sentiment_score)
 numpy_df_test = np.asarray(sentiment_score_list)

 # Generating models
 rf = RandomForestRegressor(random_state=)
 rf.fit(numpy_df_train, train['prices'])
 #print rf

 prediction, bias, contributions = ti.predict(rf, numpy_df_test)
 prediction_list.append(prediction)
 #print train_start_date + ' ' + train_end_date + ' ' + test_start_date + ' ' +
test_end_date
 idx = pd.date_range(test_start_date, test_end_date)
 #print year
 predictions_df_list = pd.DataFrame(data=prediction[0:], index = idx,
columns=['prices'])

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

110

 difference_test_predicted_prices = offset_value(test_start_date, test,
predictions_df_list)
 # Adding offset to all the advpredictions_df price values
 predictions_df_list['prices'] = predictions_df_list['prices'] +
difference_test_predicted_prices
 predictions_df_list

 # Smoothing the plot
 predictions_df_list['ewma'] = pd.ewma(predictions_df_list["prices"],
span=10, freq="D")
 predictions_df_list['actual_value'] = test['prices']
 predictions_df_list['actual_value_ewma'] =
pd.ewma(predictions_df_list["actual_value"], span=10, freq="D")
 # Changing column names
 predictions_df_list.columns = ['predicted_price', 'average_predicted_price',
'actual_price', 'average_actual_price']
 predictions_df_list.plot()
 predictions_df_list_average = predictions_df_list[['average_predicted_price',
'average_actual_price']]
 predictions_df_list_average.plot()

predictions_df_list.show()

from sklearn.neural_network import MLPClassifier
from datetime import datetime, timedelta

average_upcoming_5_days_predicted += predictions_df.loc[temp_date,
'prices']
Converting string to date time
temp_date = datetime.strptime(temp_date, "%Y-%m-%d").date()
Adding one day from date time
difference = temp_date + timedelta(days=1)
Converting again date time to string
temp_date = difference.strftime('%Y-%m-%d')

start_year = datetime.strptime(train_start_date, "%Y-%m-%d").date().month

years = [2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016]
prediction_list = []
for year in years:
 # Splitting the training and testing data
 train_start_date = str(year) + '-01-01'

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

111

 train_end_date = str(year) + '-10-31'
 test_start_date = str(year) + '-11-01'
 test_end_date = str(year) + '-12-31'
 train = df.ix[train_start_date : train_end_date]
 test = df.ix[test_start_date:test_end_date]

 # Calculating the sentiment score
 sentiment_score_list = []
 for date, row in train.T.iteritems():
 sentiment_score = np.asarray([df.loc[date, 'compound'],df.loc[date,
'neg'],df.loc[date, 'neu'],df.loc[date, 'pos']])
 #sentiment_score = np.asarray([df.loc[date, 'neg'],df.loc[date, 'pos']])
 sentiment_score_list.append(sentiment_score)
 numpy_df_train = np.asarray(sentiment_score_list)
 sentiment_score_list = []
 for date, row in test.T.iteritems():
 sentiment_score = np.asarray([df.loc[date, 'compound'],df.loc[date,
'neg'],df.loc[date, 'neu'],df.loc[date, 'pos']])
 #sentiment_score = np.asarray([df.loc[date, 'neg'],df.loc[date, 'pos']])
 sentiment_score_list.append(sentiment_score)
 numpy_df_test = np.asarray(sentiment_score_list)

 # Generating models
 mlpc = MLPClassifier(hidden_layer_sizes=(100, 200, 100), activation='relu',
 solver='lbfgs', alpha=0.005, learning_rate_init = 0.001,
shuffle=False) # span = 20 # best 1
 mlpc.fit(numpy_df_train, train['prices'])
 prediction = mlpc.predict(numpy_df_test)

 prediction_list.append(prediction)
 #print train_start_date + ' ' + train_end_date + ' ' + test_start_date + ' ' +
test_end_date
 idx = pd.date_range(test_start_date, test_end_date)
 #print year
 predictions_df_list = pd.DataFrame(data=prediction[0:], index = idx,
columns=['prices'])

 difference_test_predicted_prices = offset_value(test_start_date, test,
predictions_df_list)
 # Adding offset to all the advpredictions_df price values
 predictions_df_list['prices'] = predictions_df_list['prices'] +
difference_test_predicted_prices

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

112

 predictions_df_list

 # Smoothing the plot
 predictions_df_list['ewma'] = pd.ewma(predictions_df_list["prices"],
span=20, freq="D")
 predictions_df_list['actual_value'] = test['prices']
 predictions_df_list['actual_value_ewma'] =
pd.ewma(predictions_df_list["actual_value"], span=20, freq="D")
 # Changing column names
 predictions_df_list.columns = ['predicted_price', 'average_predicted_price',
'actual_price', 'average_actual_price']
 predictions_df_list.plot()
 predictions_df_list_average = predictions_df_list[['average_predicted_price',
'average_actual_price']]
 predictions_df_list_average.plot()

predictions_df_list.show()

mlpc = MLPClassifier(hidden_layer_sizes=(100, 200, 100), activation='tanh',
 solver='lbfgs', alpha=0.010, learning_rate_init = 0.001,
shuffle=False)
mlpc = MLPClassifier(hidden_layer_sizes=(100, 200, 100), activation='relu',
 solver='lbfgs', alpha=0.010, learning_rate_init = 0.001,
shuffle=False) # span = 20
mlpc = MLPClassifier(hidden_layer_sizes=(100, 200, 100), activation='relu',
 solver='lbfgs', alpha=0.005, learning_rate_init = 0.001,
shuffle=False) # span = 20 # best 1
mlpc = MLPClassifier(hidden_layer_sizes=(100, 200, 50), activation='relu',
 solver='lbfgs', alpha=0.005, learning_rate_init = 0.001,
shuffle=False

checking the performance of training data itself
prediction, bias, contributions = ti.predict(rf, numpy_df_train)
idx = pd.date_range(train_start_date, train_end_date)
predictions_df1 = pd.DataFrame(data=prediction[0:], index = idx,
columns=['prices'])
predictions_df1.plot()
train['prices'].plot()

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

113

Implementation of Kalman Filter Estimation of Mean in Python

using PyKalman, Bokeh and NSEPy:

from math import pi
import pandas as pd
from bokeh.plotting import figure, show, output_notebook
from nsepy.archives import get_price_history
from datetime import date
from datetime import datetime
from pykalman import KalmanFilter

%matplotlib notebook

df = get_price_history(stock = 'TCS',
 start = date(2015,1,1),
 end = date(2017,04,19))
kf = KalmanFilter(transition_matrices = [1],
 observation_matrices = [1],
 initial_state_mean = df['Close'].values[0],
 initial_state_covariance = 1,
 observation_covariance=1,
 transition_covariance=.01)
state_means,_ = kf.filter(df[['Close']].values)
state_means = state_means.flatten()
df["date"] = pd.to_datetime(df.index)

mids = (df.Open + df.Close)/2
spans = abs(df.Close-df.Open)

inc = df.Close > df.Open
dec = df.Open > df.Close
w = 12*60*60*1000 # half day in ms

output_notebook()

TOOLS = "pan,wheel_zoom,box_zoom,reset,save"

p = figure(x_axis_type="datetime", tools=TOOLS, plot_width=1000, toolbar_lo
cation="left",y_axis_label = "Price",
 x_axis_label = "Date")

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

114

p.segment(df.date, df.High, df.date, df.Low, color="black")
p.rect(df.date[inc], mids[inc], w, spans[inc], fill_color='green', line_color="gree
n")
p.rect(df.date[dec], mids[dec], w, spans[dec], fill_color='red', line_color="red")
p.line(df.date,state_means,line_width=1,line_color = 'blue',legend="Kalman filt
er")

p.title = "Implementation of Kalman Filter Estimation - TCS EOD chart"
p.xaxis.major_label_orientation = pi/4
p.grid.grid_line_alpha=0.3
show(p)

7. Results/Sample Output:

Decision Tree:

We are getting wrong output.

KNN Methodology:

The value classified to unknown point is: 0

Support Vector Regression:

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

115

Deep Learning Model:

[[[0.]

 [0.00305228]

 [-0.00033845]

 ...

 [0.06331986]

 [0.06780923]

 [0.06386026]]

 [[0.]

 [0.00811193]

 [0.02051003]

 ...

 [0.01546984]

 [0.01262037]

 [0.00921522]]

 [[0.]

 [0.00232927]

 [0.00744792]

 ...

……

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

116

Reinforcement Learning and Sentiment Analysis(Random Forest

Model, Linear Regression Model, Multi Layer Perceptron or

Deep Neural Network Model):

2007-01-01

12469.971875 12469.971875 . What Sticks from '06. Somalia Orders Islamis...

2007-01-02 12472.245703 12472.245703 . Heart Health: Vitamin Does Not Prevent Death...

2007-01-03 12474.519531 12474.519531 . Google Answer to Filling Jobs Is an Algorith...

2007-01-04 12480.690430 12480.690430 . Helping Make the Shift From Combat to Commer...

2007-01-05 12398.009766 12398.009766 . Rise in Ethanol Raises Concerns About Corn a...

2007-01-06 12406.503255 12406.503255 . A Status Quo Secretary General. Best Buy and...

2007-01-07 12414.996745 12414.996745 . THE COMMON APPLICATION; Typo.com. Jumbo Bonu...

2007-01-08 12423.490234 12423.490234 . VW Group’s Sales Rose Sharply in 2006. Conso...

2007-01-09 12416.599609 12416.599609 . The Claim: Hot Leftovers Should Cool at Roo...

2007-01-10 12442.160156 12442.160156 . Love Among the Ruins. Dell Says Plant a Tree...

2007-01-11 12514.980469 12514.980469 . The Computer With a TV, and a Family's Virtu...

2007-01-12 12556.080078 12556.080078 . Make Them Fight All of Us. Hire by the Contr...

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

117

2007-01-13 12562.707519 12562.707519 . Blair Urges Britain to Pursue an Aggressive ...

2007-01-14 12569.334961 12569.334961 . Smoke Damage. Mr. Spitzer’s Task on Court Re...

2007-01-15 12575.962403 12575.962403 . The Mentally Ill, Behind Bars. BP’s Chief to...

2007-01-16 12582.589844 12582.589844 . King Day in Atlanta, ‘the One Without Mrs. K...

2007-01-17 12577.150391 12577.150391 . Racial Hate Feeds a Gang War’s Senseless Kil...

…………………….

prices articles

2007-01-01 12469 What Sticks from '06. Somalia Orders Islamist...

2007-01-02 12472 Heart Health: Vitamin Does Not Prevent Death ...

2007-01-03 12474 Google Answer to Filling Jobs Is an Algorithm...

2007-01-04 12480 Helping Make the Shift From Combat to Commerc...

2007-01-05 12398 Rise in Ethanol Raises Concerns About Corn as...

2007-01-06 12406 A Status Quo Secretary General. Best Buy and ...

2007-01-07 12414 THE COMMON APPLICATION; Typo.com. Jumbo Bonus...

2007-01-08 12423 VW Group’s Sales Rose Sharply in 2006. Consol...

2007-01-09 12416 The Claim: Hot Leftovers Should Cool at Room...

2007-01-10 12442 Love Among the Ruins. Dell Says Plant a Tree,...

2007-01-11 12514 The Computer With a TV, and a Family's Virtua...

2007-01-12 12556 Make Them Fight All of Us. Hire by the Contra...

2007-01-13 12562 Blair Urges Britain to Pursue an Aggressive F...

2007-01-14 12569 Smoke Damage. Mr. Spitzer’s Task on Court Ref...

2007-01-15 12575 The Mentally Ill, Behind Bars. BP’s Chief to ...

2007-01-16 12582 King Day in Atlanta, ‘the One Without Mrs. Ki...

2007-01-17 12577 Racial Hate Feeds a Gang War’s Senseless Kill...

2007-01-18 12567 Taliban Detainee Says Rebel Chief Hides in Pa...

2007-01-19 12565 Data Breach Could Affect Millions of TJX Shop...

2007-01-20 12536 Archives of Spin. H.P. Chief Defends Timing o...

2007-01-21 12506 Connecticut’s Diaspora. Son of Dogs Playing P

……………

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

118

2007-01-01

12469

2007-01-02 12472

2007-01-03 12474

2007-01-04 12480

2007-01-05 12398

2007-01-06 12406

2007-01-07 12414

2007-01-08 12423

2007-01-09 12416

2007-01-10 12442

…………

prices compound neg neu pos

2007-01-01 12469

2007-01-02 12472

2007-01-03 12474

2007-01-04 12480

2007-01-05 12398

2007-01-06 12406

2007-01-07 12414

2007-01-08 12423

2007-01-09 12416

2007-01-10 12442

2007-01-11 12514

2007-01-12 12556
 …………..

prices compound neg neu pos

2007-01-01 12469 -0.9735 0.153 0.748 0.099

2007-01-02 12472 -0.9664 0.122 0.784 0.095

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

119

prices compound neg neu pos

2007-01-03 12474 -0.9994 0.207 0.733 0.06

2007-01-04 12480 -0.9982 0.131 0.806 0.062

2007-01-05 12398 -0.9901 0.124 0.794 0.082

2007-01-06 12406 -0.965 0.134 0.771 0.094

2007-01-07 12414 -0.9975 0.193 0.739 0.069

2007-01-08 12423 -0.973 0.114 0.788 0.098

2007-01-09 12416 -0.9945 0.104 0.844 0.052

2007-01-10 12442 -0.9863 0.141 0.742 0.117

2007-01-11 12514 -0.9981 0.131 0.81 0.059

………..

array([13641.5 , 13461.6 , 15840.38333333, 13780.

 ,

 10800.1 , 13148.4 , 9041.4 , 14952.4

 ,

 12361.9 , 14916.2 , 14543.1 , 11104.113333

33,

 11381.55 , 12849.13333333, 10697.54 , 13305.55

 ,

 10913.8 , 9965.16666667, 13685.6 , 12008.65

 ,

 11371.34 , 13397.6 , 12677.125 , 12108.3

 ,

 14366.7 , 12970.8 , 10861.9 , 12791.6

 ,

 11023.92 , 13064.2 , 9194.7 , 14356.6

 ,

 12995.8 , 13851.2 , 11510.25 , 14062.3

 ,

 12786.23333333, 12650. , 13515.8 , 14025.

 ,

 11637.85 , 12327.86666667, 15235.7 , 13036.4

 ,

 13642. , 12938.1 , 12299.05 , 12517.4

 ,

 13859.17857143, 12800.6 , 14177.87 , 14851.2

 ,

 10956.8 , 12583.35 , 14543.80833333, 13524.

 ,

 14326. , 12712.7 , 12912.63333333, 15375.

 ,

 10239.1 , 11562.6 , 13225.81666667, 11772.8

 ,

 13399.9 , 14459.4 , 13572.3 , 15218.4

 ,

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

120

 13196.5 , 12623.83333333, 13181.8 , 14188.4

 ,

 12084.2 , 10620.3 , 12294.43333333, 14259.6

 ,

…..

prices

2015-01-01 13641.500000

2015-01-02 13461.600000

2015-01-03 15840.383333

2015-01-04 13780.000000

2015-01-05 10800.100000

2015-01-06 13148.400000

2015-01-07 9041.400000

2015-01-08 14952.400000

2015-01-09 12361.900000

2015-01-10 14916.200000

2015-01-11 14543.100000

………………

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

121

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

122

Implementation of Kalman Filter Estimation of Mean in Python

using PyKalman, Bokeh and NSEPy:

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

123

8.Conclusion:

We have implemented many a algorithms in our search for the optimal one.
Wehave found the following two among them to give us better results:

1. SVR RBF Model
2. MLP Model

Our research is still going on and now we are trying to implement a suitable
algorithm for Kalman Filtering so that we can fine-tune our results to some
more extent.

Till now, we have faced both success and failure. But that is a part of research.
We have found ways in which it would work as well as ways in which won’t
work.

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

124

Appendix:

Kindly refer to the “6. Implementation Details” section.

References:

1. Abhyankar, A., Copeland, L. S., & Wong, W. (1997). Uncovering nonlinear structure in
real-time stockmarket indexes: The S&P 500, the DAX, the Nikkei 225, and the FTSE-100.
Journal of Business & Economic Statistics, 15, 1–14.
2. Austin, M. Looney, C., & Zhuo, J. (1997). Security market timing using neural network
models. New Review of Applied Expert Systems, 3, 3–14.
3. Box, G. E. P., & Jenkins, G. M. (1970). Time series analysis: Forecasting and control,
Holden Day.
4. Brownstone, D., (1996). Using percentage accuracy to measure neural network predictions
in stock market movements. Neurocomputing, 10, 237–250.
5. Brown, S. J., Goetzmann, W. N., & Kumar, A. (1998). The Dow Theory: William Peter
Hamilton's track record reconsidered. Journal of Finance, 53, 1311–1333.
6. Desai, V. S., & Bharati, R., (1998). A comparison of linear regression and neural network
methods for predicting excess returns on large stocks. Annals of Operations Research, 78, 127–
163.
7. Engle, RF, (1982), Autoregression Conditional Heteroscedasticity Estimates of the variance of
UK Inflation, Econometrica, 50, 987-1008.
8. Fama, Eugene (1970), “Efficient Capital Markets: A Review of Theory and Empirical Work,”
Journal of Finance.
9. Fernandez-Rodriguez, F., Gonzalez-Martel, C., & Sosvilla-Rivero, S. (2000). On the
profitability of technical trading rules based on artificial neural networks: Evidence from the
Madrid stock market. Economic Letters, 69, 89–94.
10. Goutam Dutta, Pankaj Jha, Arnab Kumar Laha and Neeraj Mohan Artificial Neural Network
Models for Forecasting Stock Price Index in the Bombay Stock Exchange Journal of Emerging
Market Finance,
Vol. 5, No. 3, 283-295.
11. Gleick James, Chaos: The Amazing Science of the Unpredictable, Penguin.
12. Hakins, Simon., Neural Networks, A Comprehensive Foundation, 2nd Edition, Prentice Hall
International.
13. Huang Wei., Wang Shouyang., Yu Lean., Bao1 Yukun., and Wang Lin., (2006) A New
Computational Method of Input Selection for Stock Market Forecasting with Neural Networks,
Lecture Notes In Computer Science.
14. Jung-Hua Wang; Jia-Yann Leu Stock market trend prediction using ARIMA-based neural
networks Neural Networks, 1996., IEEE International Conference on Volume 4, Issue , 3-6 Jun
1996 Page(s):2160 – 2165 vol.4.
15. Kim, Kyoung-Jae. Artificial neural networks with feature transformation based on domain
knowledge for the prediction of stock index futures Intelligent Systems in Accounting, Finance &
Management,
Vol. 12, Issue 3 , Pages 167 – 176.
16. Kim, S, K., and S.H Chun (1998) “Graded Forecasting Using An Array Of Bipolar Predictions:
Application Of Probabilistic Neural Network To A Stock Market Index.” International Journal of
Forecasting, 14, 323-337.
17. Kim, K, J and I Han (2000) Genetic algorithm approach to feature discretization in artificial
neural network for the prediction of stock price index.” Published by Elsevier science, Ltd.,
Experts systems with application, 19, 125-132.
18. Kuvayev Leonid, (1996) Predicting Financial Markets with Neural Networks.

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

125

19. Leigh, W.Paz, M., & Purvis, R. (2002). An analysis of a hybrid neural network and pattern
recognition technique for predicting short-term increases in the NYSE composite index. Omega-
International Journal of Management Science, 30, 69–76.
20. Malkiel, Burton G. (2003). "The Efficient Market Hypothesis and Its Critics”. CEPS Working
paper No
91.
21. Mendelsohn Louis B. (2000) Trend Forecasting with Technical Analysis: Unleashing the
Hidden Power of Intermarket Analysis to Beat the Market, Marketplace Books.
22. Marius Januskevicius, Testing Stock Market Efficiency Using Neural Network
23. Pan H. P. (2003), A joint review of Technical and Quantitative Analysis of Financial Markets
Towards a Unified Science of Intelligent Finance, Paper for the 2003 Hawaii International
Conference on Statistics and Related Fields.
24. Pan H.P. (2004): A swingtum Theory of Intelligent Finance for swing trading and momentum
trading, 1st International workshop on Intelligent Finance.
25. Pan Heping,Tilakaratne C and Yearwood John(2005): “Predicting Australian Stock Market
Index using Neural Networks Exploiting Dynamic Swings and Inter-market Influences” Journal of
Research and Practice in Information Technology, Vol 37, No 1
26. Panda, C. and Narasimhan, V. (2006) Predicting Stock Returns : An Experiment of the
Artificial Neural Network in Indian Stock Market South Asia Economic Journal, Vol. 7, No. 2, 205-
218.
27. Pantazopoulos, K. N., Tsoukalas, L. H., Bourbakis, N. G., Brun, M. J., & Houstis, E. N.
(1998). Financial prediction and trading strategies using neurofuzzy approaches. IEEE
Transactions on Systems, Man, and Cybernetics-PartB: Cybernetics, 28, 520–530.
28. Roman, Jovina and Jameel, Akhtar Backpropagation and Recurrent Neural Networks in
Financial Analysis of Multiple Stock Market Returns.
29. Refenes, Zapranis, and Francis, (1994) Journal of Neural Networks, Stock Performance
Modeling Using Neural Networks: A Comparative Study with Regression Models, Vol. 7, No. 2,.
375-388.
30. Saad, E.W.; Prokhorov, D.V.; Wunsch, D.C., II (1998) Comparative study of stock trend
prediction using time delay, recurrent and probabilistic neural networks IEEE Transactions on
Neural Networks, Volume 9, Issue 6, Page(s): 1456 - 1470
31. Schoeneburg, E., (1990) Stock Price Prediction Using Neural Networks: A Project Report,
Neurocomputing, vol. 2, 17-27.
32. Siekmann, S., Kruse, R., & Gebhardt, J. (2001). Information fusion in the context of stock
index prediction. International Journal of Intelligent Systems, 16, 1285–1298.
33. S.-I. Wu and H. Zheng (USA) (2003) Can Profits Still be made using Neural Networks in
Stock Market? (410) Applied Simulation and Modeling
34. Tsaih, R., Hsu, Y., & Lai, C. C., (1998). Forecasting S&P 500 stock index futures with a
hybrid AI system. Decision Support Systems, 23, 161–174.
35. https://www.marketcalls.in/python/implementation-kalman-filter-estimation-mean-python-
using-pykalman-bokeh-nsepy.html
36. http://www.haikulabs.com/pmdwkf26.htm
37. https://pykalman.github.io/
38. https://towardsdatascience.com/the-random-forest-algorithm-d457d499ffcd
39. https://deeplearning4j.org/neuralnet-overview
40. https://towardsdatascience.com/linear-regression-detailed-view-ea73175f6e86
41. https://deeplearning4j.org/deepreinforcementlearning
42. https://keras.io/
43. https://www.tensorflow.org/
44.https://www.csdojo.io/
45. http://www.sirajraval.com/
46. https://pandas.pydata.org/
47. https://www.scipy.org/
48. http://www.numpy.org/
49. https://en.wikipedia.org/wiki/Autoregressive_integrated_moving_average
50. https://github.com/

https://www.marketcalls.in/python/implementation-kalman-filter-estimation-mean-python-using-pykalman-bokeh-nsepy.html
https://www.marketcalls.in/python/implementation-kalman-filter-estimation-mean-python-using-pykalman-bokeh-nsepy.html
http://www.haikulabs.com/pmdwkf26.htm
https://pykalman.github.io/
https://towardsdatascience.com/the-random-forest-algorithm-d457d499ffcd
https://deeplearning4j.org/neuralnet-overview
https://towardsdatascience.com/linear-regression-detailed-view-ea73175f6e86
https://deeplearning4j.org/deepreinforcementlearning
https://keras.io/
https://www.tensorflow.org/
http://www.sirajraval.com/
https://github.com/

Theory of Estimation
 using
Artificial Intelligence Mr. Jaydip Mukhopadhyay Grp. No.:-7

126

51.https://quora.com

	How can an algorithm be represented as a tree?
	Recursive Binary Splitting
	Cost of a split
	When to stop splitting?
	Pruning
	Advantages of CART
	Disadvantages of CART
	Classification
	Clustering
	Predictive Analytics: Regressions
	Neural Network Elements
	Example: Feedforward Networks
	Multiple Linear Regression
	Gradient Descent

	Updaters
	Activation Functions
	Custom layers, activation functions and loss functions
	Logistic Regression
	Loss Functions in DeepLearning4J
	Applying Loss Functions in DeepLearning4J
	Neural Networks & Artificial Intelligence
	Enterprise-Scale Deep Learning
	Support vector machine
	Applications

	Radial basis function network
	Simple Linear Regression
	Reinforcement Learning Definitions
	The Relationship Between Machine Learning with Time
	Neural Networks and Deep Reinforcement Learning

	Keras: The Python Deep Learning library
	Guiding principles
	Features
	Applications

	Implementation of Kalman Filter Estimation of Mean in Python using PyKalman, Bokeh and NSEPy:
	Implementation of Kalman Filter Estimation of Mean in Python using PyKalman, Bokeh and NSEPy:

