HUMAN ACTIVITY RECOGNITION AND ANALYSIS USING ACCELEROMETER DATA

By

MS. ASHWINI DHAREWA (11700114020)

MS. DISHA ROY CHOWDHURY (11700114031)

MS. SWAGATA KUNDU (11700114085)

MS. TANUSREE ROY (11700114089)

UNDER THE GUIDANCE OF

MR. SOMENATH NAG CHOUDHURY

PROJECT REPORT SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

BACHELOR OF TECHNOLOGY IN COMPUTER SCIENCE AND ENGINEERING

RCC INSTITUTE OF INFORMATION TECHNOLOGY

SESSION 2017-2018

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

RCC INSTITUTE OF INFORMATION TECHNOLOGY [Affiliated to Maulana Abul Kalam Azad University of Technology] CANAL SOUTH ROAD, BELIAGHATA, KOLKATA-700015

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING RCC INSTITUTE OF INFORMATION TECHNOLOGY

TO WHOM IT MAY CONCERN

I hereby recommend that the Project entitled ENHANCED HUMAN ACTIVITY RECOGNITION USING ACCELEROMETER DATA FROM SMARTPHONES prepared under my supervision by Ashwini Dharewa (11700114020), Disha Roy Chowdhury(11700114031), Swagata Kundu (11700114085), Tanusree Roy (11700114089) of B.Tech (7th Semester), may be accepted in partial fulfilment for the degree of Bachelor of Technology in Computer Science & Engineering under Maulana Abul Kalam Azad University of Technology (MAKAUT).

.....

Project Supervisor Department of Computer Science and Engineering RCC Institute of Information Technology

Countersigned:

Head

Department of Computer Science & Engineering, RCC Institute of Information Technology Kolkata – 700015.

Human Activity Recognition and Analysis using Accelerometer Data

DEPARTMENT PF COMPUTER SCIENCE AND ENGINEERING RCC INSTITUTE OF INFORMATION TECHNOLOGY

CERTIFICATE OF APPROVAL

The foregoing Project is hereby accepted as a credible study of an engineering subject carried out and presented in a manner satisfactory to warrant its acceptance as a prerequisite to the degree for which it has been submitted. It is understood that by this approval the undersigned do not necessarily endorse or approve any statement made, opinion expressed or conclusion drawn therein, but approve the project only for the purpose for which it is submitted.

FINAL EXAMINATION FOR EVALUATION OF PROJECT

1._____

2._____

(Signature of Examiners)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING RCC INSTITUTE OF INFORMATION TECHNOLOGY

ACKNOWLEDGEMENT

We would like to express our gratitude to our teacher Mr. Somenath Nag Chowdhury, for giving us a good guideline for our project. We would also like to expand our deepest gratitude to all those who have directly and indirectly guided us in this project.

Our sincerest gratitude to many people, especially our classmates and team members itself, for making valuable comment suggestions which gave us an inspiration to improve our project. We thank all the people for their help directly and indirectly for this project.

Human Activity Recognition and Analysis using Accelerometer Data

Abstract

In the given Final Year Project "Human Activity Recognition using Accelerometer Data", we are implementing a hardware application (making use of Arduino Uno, Bluetooth module HC 05, Sensor MPU 6050) that is able to record data for different activities such as walking, jogging or sitting. The very next task is to select one of the collected data and carry out the filtering process for the selected data record in order to remove the unwanted noises. Next we perform the activity recognition that detects which activity has been performed. It could be either walking, running or sitting. For that purpose we have implemented a software interface using MATLAB coding. Activity Recognition is carried out (comparing sample data with the base data with respect to gender and age) using some recognition features such as RMS measure, Automatic peak detection, Count Peak grouping etc. and further we carry out analysis part of activity recognition which checks the fitness.

Table of Contents

Abstract	5				
Chapter 1:	Introduction8				
	Review of Literature9, 10				
	Objective of the Project11				
	System Design12				
Chapter 2:	Methodology for implementation (Hardware Implementation)13-20				
	Components Used13, 14				
	Block Diagram15				
	Hardware Kit16				
	Arduino Code17				
	Excel sheets for recorded data18, 19, 20	J			
Chapter 3:	Methodology for implementation (Software Implementation 1)				
	Activity Recognition21-31				
Chapter 4:	Methodology for implementation (Software Implementation 2)				
	Activity Analysis				
Chapter 5:	Diagrammatic Representation of the complete Human Activity Recognition And Analysis35-36	n			
Chapter 6:	Implementation details38-47				
Conclusion					
Future Scope					
References					

Table of figures

Figure Number About		Page Number
Fig 2.1(a)	Arduino Uno Kit	11
Fig 2.1(b)	Bluetooth Module HC 05	11
Fig 2.1(c)	Sensors MPU 6050	12
Fig 2.2	Block Diagram	13
Fig 2.3	Our Hardware Kit	14
Fig 2.4(a)	Jog.xlsx	16
Fig 2.4(b)	Walk.xlsx	17
Fig 2.4(c)	Sit.xlsx	18
Fig 3.1	Filtered data	20
Fig 3.2	RMS measure	21
Fig 3.3	Automatic Peak Detection	23
Fig 3.4	Count Peak Grouping	24
Fig 3.5	Max-min-avg of peaks	26
Fig 5	Pictorial representation of activity recognition	33,34,35
Fig 6(a)	Home Page	36
Fig 6(b)	Activity analysis and recognition	39
Fig 6(c)	Selection of activities to be analyzed	40
Fig 6(d)	Fitness Analysis	42
Fig 6(e)	Combined visualization of all activities	43
Fig 6(f)	Obtaining fitness accuracy	44

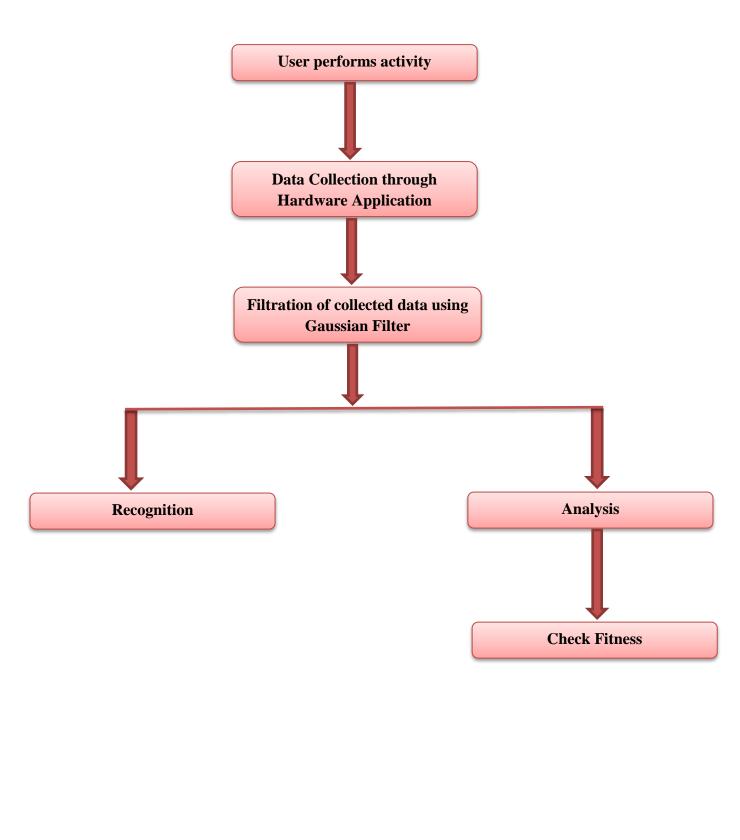
INTRODUCTION

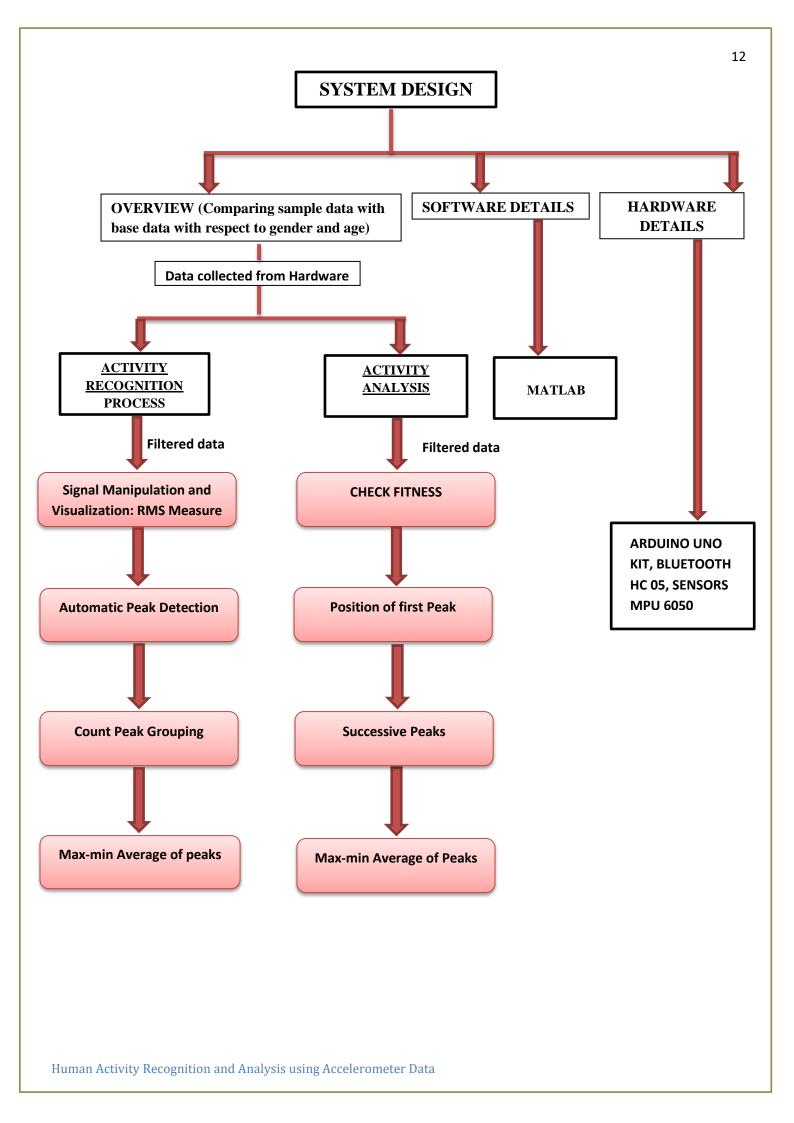
Human Activity Recognition and Analysis deals with the recognition of certain human activities and certainly manipulating the recorded data to check the fitness. Activities such as walking, running, jogging are some of the physical activities that a person performs in his day to day lives. Our Hardware is able to record the data for such activities. Later the recorded data is manipulated for certain purposes that we have described in our complete project work. The synergy of communication, computation and sensing capabilities in mobile systems-on-chip devices such as smartphones has made possible the development of wearable smart sensor systems for user activity monitoring and recognition. A human activity hierarchical recognition system based on neural networks without the need of the smartphone to be constrained to a single fixed position is presented. Experimental results on Android-capable smartphones on four on-body locations show that the recognition system achieves high classification rates, above 92%, for five activities including slow walking, fast walking, jogging, and up-down stairs walking, which outperforms other proposals.

REVIEW OF LITERATURE

Reference Number	Author(s)	Published in	Year of publication
1.	Aminian,K and Robert,	Medical and Biological	1991
	Ph and Buchser, EE and	engineering and	
	Rutschmann	computing; 37:3-304	
2.	Bao,Ling and	Springer	2004
	Intille,StephenS		
3.	Casale, Pierluigi and	289 pp, Springer.	2011
	Pujol, Oriol and Radeva,		
	Petia		
4.	Khan, Adil Mehmood	Information Technology	2010
	and Lee, Young-Koo	in Biomedicine, IEEE	
	and Lee, Sungyoung Y		
	and Kim, Tae-Seong		
5.	Lester, Jonathan and	Springer	2006
	Choudhury, Tanzeem		
	and Borriello, Gaetano		
6.	Kwapisz, Jennifer R and	ACM SigKDD	2011
	Weiss, Gary M and	Explorations Newsletter	
	Moore, Samuel A		
7.	Ravi, Nishkam and	AAAI	2005
	Dandekar, Nikhil and		
	Mysore, Preetham and		
	Littman, Michael		
8.	Mannini, Andrea and	Sensors	2010
	Sabatini, Angelo Maria		
9.	Ruta, Dymitr and	Informtion fusion	2005
	Gabrys, Bogdan		
10.	Gyllensten, Illapha Cuba	IEEE Transaction	2011
	and Bonomi, Alberto G		
11.	Alelyani, Salem and	IEEE	2013
	Tang, Jiliang and Liu,		
	Huan		
12.	Fujiki, Yuichi	CHI'10 Extended	2010
		Abstracts	
13.	Krishnan, Narayanan C	, signals and information	2008
	and Colbry, Dirk and	processing workshop	
	Juillard, Colin and		
	Panchanathan,		
	Sethuraman		
14.	. Foerster, Friedrich and	instruments, &	2000
	Fahrenberg, Jochen	computers	
15.	Westerterp, Klaas R	European journal of	2009
		applied physiology	
16.	Poppe, Ronald	Image and vision	2010
		computing	
17.	Kwapisz, Jennifer R and	Fourth IEEE	2010
	Weiss, Gary M and	International Conference	
	Moore, Samuel A		

SPECIFIC PROJECT RELATED REFERENCES				
ACTIVITY RECOGNITION	ABSTRACT	PUBLISHED IN		
Signal Manipulation and	The paper introduces activity	IEEE Transactions on		
Visualization	detection to scientific simulations	Visualization and Computer		
	with respect to time and its	Graphics		
	utilization in scientific	(Volume: 20,Issue: 3, March		
	visualization.	2014)		
Frequency Domain Analysis	The paper presents a smart phone	Computer Science and Network		
	position independent activity	Technology (ICCSNT),2013 at		
	recognition model based on	3 rd International Conference.		
	frequency domain using FFT			
	curves.			
Feature Extraction of signals	Feature Extraction of EEG for	Advances in Signal processing		
	emotion recognition using higher	(CASP) 11 th june 2010		
	order crossings			
Test and Train of neural	Artificial neural networks in	Mixed design of integrated		
Networks	accelerometer based human activity	circuits and sysytems		
	recognition.	(MIXDES),2015 22 nd		
		International Conference		


AUTOMATED SYSTEM	ABSTRACT	PUBLISHED IN
DESIGN		
Moving average filter	The paper presents a novel real-	Computers in Cardiology,2003
	time QRS detection algorithm	
	designed based on a simple	
	moving average filter.	
Exponential Moving average	This paper studies MPPT	Power and Energy (PECon),2012
filter	(Maximum Power Point Tracking)	IEEE International Conference
	control performance in the	
	existence of noise, paying special	
	attention to the output degradation	
	problem.	


SPECIFIC PROJECT RELATED REFERENCES

Г

OBJECTIVE OF THE PROJECT

To design and develop a automated system application software to recognize, classify and analyze the different human activities and provide some informative message in return.

Chapter 2

METHODOLOGY FOR IMPLEMENTATION

HARDWARE IMPLEMENTATION

- 1. User Performs activity (Jogging, Walking, Sitting)
- Collection of data through a Hardware Application.
 Description: We have built a hardware application that could record data for different human activities and later those data could be used for the recognition as well as analysis process.

2.1 COMPONENTS USED FOR THE HARDWARE SETUP:

• ARDUINO UNO KIT

Fig 2.1(a) Arduino Kit

Arduino board designs use a variety of microprocessors and controllers. The boards are equipped with sets of digital and analog input/output (I/O) pins that may be interfaced to various expansion boards or Breadboards and other circuits. The boards feature serial communications interfaces, including Universal Serial Bus (USB) on some models, which are also used for loading programs from personal computers.

Arduino is open-source hardware. The hardware reference designs are distributed under a Creative Commons Attribution Share-Alike 2.5 license.

Arduino microcontrollers are pre-programmed with a boot loader that simplifies uploading of programs to the on-chip flash memory.

• BLUETOOTH HC 05

Fig 2.1(b) Bluetooth module HC 05

HC-05 module is an easy to use Bluetooth SPP (Serial Port Protocol) module, designed for transparent wireless serial connection setup. The HC-05 Bluetooth Module can be used in a Master or Slave configuration, making it a great solution for wireless communication. This serial port bluetooth module is fully qualified Bluetooth V2.0+EDR (Enhanced Data Rate) 3Mbps Modulation with complete 2.4GHz radio transceiver and baseband. It uses CSR Bluecore 04-External single chip Bluetooth system with CMOS technology and with AFH (Adaptive Frequency Hopping Feature).

The Bluetooth module HC-05 is a MASTER/SLAVE module. By default the factory setting is SLAVE. The Role of the module (Master or Slave) can be configured only by AT COMMANDS. The slave modules cannot initiate a connection to another Bluetooth device, but can accept connections. Master module can initiate a connection to other devices. The user can use it simply for a serial port replacement to establish connection between MCU and GPS, PC to any embedded project.

• SENSOR MPU 6050

Fig 2.1(c) Sensor MPU 6050

The MPU6050 has an embedded 3-axis MEMS gyroscope, a 3-axis MEMS accelerometer. It is very useful for some motion detecting. This small module integrate the logic level converter circuit (makes it compatible with 3.3V-5V voltage level) together with the MPU6050 sensor, you can integrate it to your project conveniently.

Features of MPU6050

- I2C interface
- Compatible with 3.3V-5.0V voltage level

2.2 BLOCK DIAGRAM FOR THE HARDWARE SETUP:

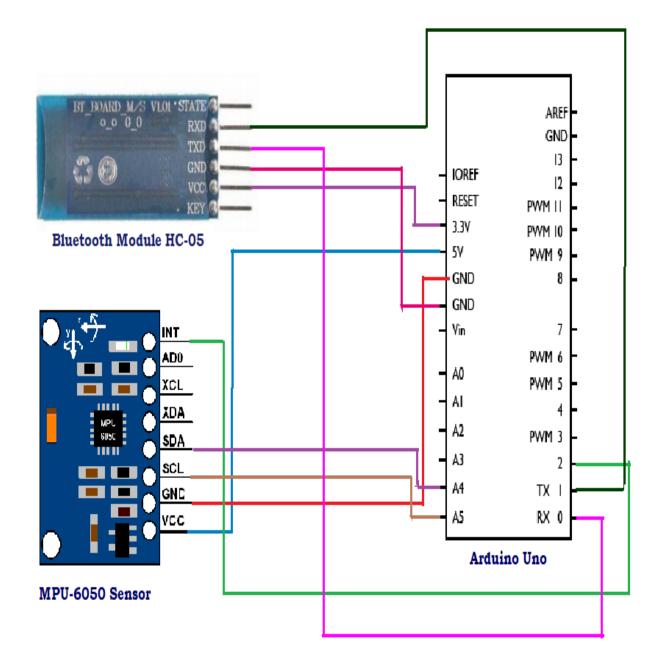


Fig 2.2 Block Diagram

Human Activity Recognition and Analysis using Accelerometer Data

2.3 OUR HARDWARE IMPLEMENTED KIT

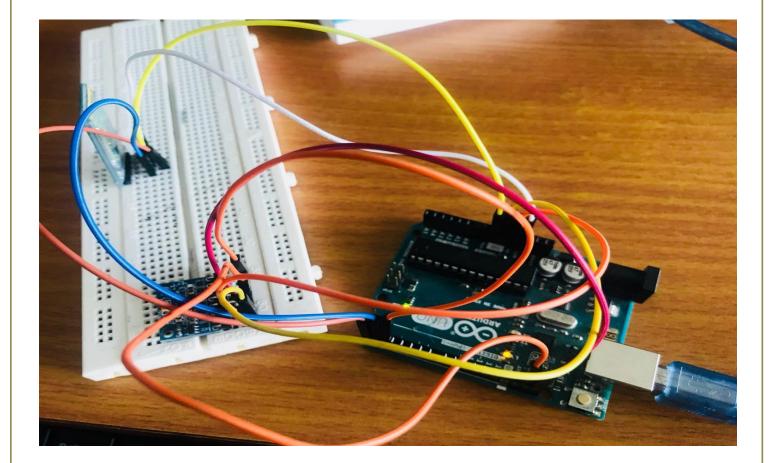
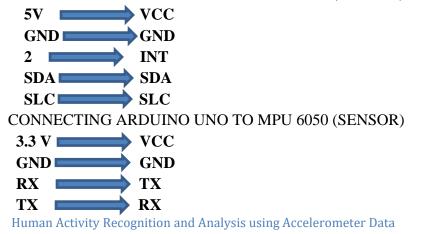



Fig 2.3 Hardware Kit

CONNECTIONS REQUIRED FOR THE HARDWARE IMPLEMENTATION

CONNECTING ARDUINO UNO TO MPU 6050 (SENSOR)

2.4 ARDUINO UNO CODE:

#include<Wire.h>

const int MPU6050_addr=0x68;

int16_t AccX,AccY,AccZ,Temp,GyroX,GyroY,GyroZ; float t=0.000; float i=0.002;

void setup(){

Wire.begin();

Wire.beginTransmission(MPU6050_addr);

Wire.write(0x6B);

Wire.write(0);

Wire.endTransmission(true);

Serial.begin(9600); Serial.println("Time(s), X ,Y ,Z ");

}

void loop(){

Wire.beginTransmission(MPU6050_addr); Wire.write(0x3B); Wire.endTransmission(false); Wire.requestFrom(MPU6050_addr,14,true);

AccX=(Wire.read()<<8|Wire.read());

AccY=(Wire.read()<<8|Wire.read());

AccZ=(Wire.read()<<8|Wire.read()); Serial.print(t); Serial.print(","); Serial.print(AccX/16384.0000); Serial.print(AccY/16384.0000); Serial.print(","); Serial.print(","); Serial.println(AccZ/16384.0000); Human Activity Recognition and Analysis using Accelerometer Data t=t+i; delay(10);

}

Data recorded for jogging activity

				[
	А	В	С	D
1	Time (s)	Х	Y	Z
2	0	0.999603	5.999939	13.0419
3	0	2.143372	5.838425	9.56514
4	0	1.570297	5.883881	5.236511
5	0.016	-0.05203	6.92955	5.961548
6	0.036	-0.28415	7.045593	10.57372
7	0.054	1.204193	7.603134	14.16893
8	0.074	2.600403	6.669922	13.12805
9	0.093	2.056046	4.52356	8.733627
10	0.113	0.041275	2.780396	5.549973
11	0.131	-0.91226	2.03862	5.43512
12	0.15	0.434906	0.913986	6.397034
13	0.17	-0.51744	1.203522	5.498535
14	0.191	0.199203	1.312393	4.217178
15	0.207	0.304489	1.578003	0.633926
16	0.226	0.193222	1.95607	-0.46439
17	0.246	0.464813	2.38678	2.648682
18	0.265	0.182465	5.101425	6.456863
19	0.284	-0.80339	8.434631	8.974106
20	0.302	-1.30588	9.355865	9.926453
21	0.322	-3.44984	10.12636	12.03931
22	0.344	-0.54855	12.22366	16.49715
23	0.36	-1.26401	12.90682	17.32506
~ •		a	4 C C C C C C C C C C C C C C C C C C C	40.00446

Fig 2.4(a) jog.xlsx

	А	В	С	D
5	Time (s)	Х	Υ	Z
6	0	-0.30646	1.249786	13.92946
7	0.011	-0.91937	1.249786	11.4778
8	0.026	-1.53229	1.862701	8.719681
9	0.042	-1.83875	2.475616	7.187378
10	0.075	-2.1452	2.782074	7.800308
11	0.075	-1.83875	2.169159	9.332596
12	0.089	-0.91937	0.943329	11.78426
13	0.105	0	-0.58896	14.54237
14	0.121	0.919373	-1.50833	15.15529
15	0.138	0.919373	-1.20187	13.01009
16	0.154	0.919373	-0.2825	9.945511
17	0.17	0.612915	1.249786	7.800308
18	0.185	0.306458	2.169159	6.88092
19	0.201	0.612915	1.862701	7.493851
20	0.22	0.919373	0.943329	9.026138
21	0.232	0.919373	-0.2825	12.39717
22	0.248	0.612915	-1.81479	15.7682
23	0.265	-0.61292	-2.12125	16.38112
24	0.282	-1.22583	-1.20187	14.23592

Data recorded for walking activity

Fig 2.4(b) walk.xlsx

	Α	В	С	D
5	Time (s)	Х	Y	Z
б	0	-0.61292	0.943329	9.639053
7	0	-0.61292	0.943329	9.332596
8	0.017	-0.61292	1.249786	9.332596
9	0.032	-0.61292	1.249786	9.639053
10	0.061	-0.61292	1.249786	9.639053
11	0.063	-0.61292	1.249786	9.945511
12	0.08	-0.61292	1.249786	9.639053
13	0.095	-0.61292	1.249786	9.639053
14	0.114	-0.61292	1.249786	9.639053
15	0.129	-0.61292	0.943329	9.639053
16	0.143	-0.61292	0.943329	9.639053
17	0.159	-0.61292	0.943329	9.945511
18	0.175	-0.61292	0.943329	9.945511
19	0.19	-0.61292	0.943329	9.639053
20	0.207	-0.61292	0.943329	9.639053
21	0.222	-0.61292	1.249786	9.639053
22	0.237	-0.61292	1.249786	9.639053
23	0.254	-0.61292	1.249786	9.639053
24	0.27	-0.61292	1.249786	9.945511

Data recorded for sitting activity

Fig 2.4(c) sit.xlsx

Chapter 3

METHODOLOGY FOR IMPLEMENTATION 3. ACTIVITY RECOGNITION

Here we will be selecting out a random collected data through browsing the excel sheets and further the selected data will be recognised or detected to be walking, sitting or jogging activity.

3.1 FILTERING OF THE SELECTED DATA

Here we are making use of Gaussian Filter for the purpose of filtering. Filtering is basically done to limit the noise in the selected data.

Gaussian Filter is a filter whose impulse response is a Gaussian Function.

MATLAB CODE FOR THE FILTERING PROCESS:

global walk1; global sit1; global jog1; global selectedfile1; global walk; global sit; global jog; global selectedfile; global T1; global T2; global T3; global T4; global T5; T1=xlsread(selectedfile1,'Sheet1','A1:A1845') //Read time value of selected data X = xlsread(selectedfile1,'Sheet1','B1:B1845') Y = xlsread(selectedfile1,'Sheet1','C1:B1845') //Read AccY value of selected data for i=1:length(X) V1(i) = sqrt((X(i)*X(i))+(Y(i)*Y(i)))End

[selectedfile, window] = smoothdata(V1,'gaussian');

//Read AccX value of selected data

//Calculate |V| from AccX and AccY

//Filtering the data and store it in selectedfile

Human Activity Recognition and Analysis using Accelerometer Data

T2=xlsread(walk1,'Sheet1','A1:A1845') walk = xlsread(walk1,'Sheet1','E1:E1845')

T3=xlsread(sit1,'Sheet1','A1:A1845') sit = xlsread(sit1,'Sheet1','E1:E1845')

T5=xlsread(jog1,'Sheet1','A1:A1845') jog = xlsread(jog1,'Sheet1','E1:E1845')

plot(T1,V1) hold on plot(T1,selectedfile) legend('Original Data','Filtered Data') //Read Base Data for walking, sitting and jogging for the corresponding age and gender

//Plot original vs. filtered data

60 Original Data Filtered Data 50 Acceleration 40 30 20 10 0 30 20 25 35 40 5 10 15

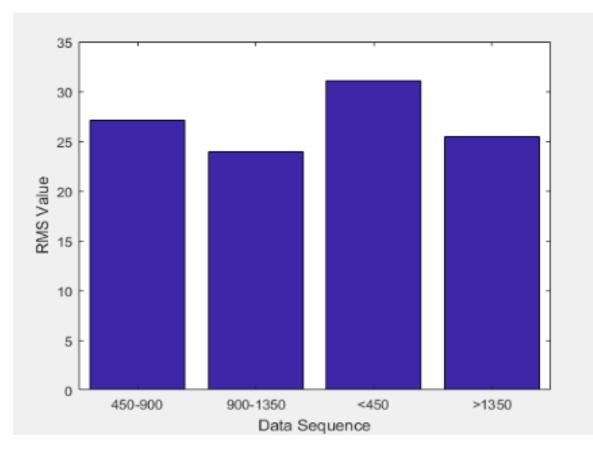
PICTORIAL RERESENATION FOR THE FILTERED DATA:

Fig 3.1 Filtered Data

3.2 SIGNAL MANIPULATION AND VISUALISATION: RMS MEASURE

Question: What is RMS Measure?

Answer: RMS is abbreviated as Root Mean Square is mainly defined as the square root of the mean square (arithmetic mean of the squares of a set of numbers).


Pictorial Representation for the calculation of RMS Measure for a sample data

Age: Between 18-40 years

Gender: Female

Activity: Jogging

Description: Here we have initially collected 1845 data records for the respective activity and taking 450 records per interval, the RMS value is calculated and finally a bar chart is consecutively plotted.

Human Activity Recognition and Analysis using Accelerometer Data

Fig 3.2 RMS Measure

MATLAB CODE for RMS Measure

global selectedfile;

global T1;

y=selectedfile(1:450)

x=T1(1:450)

s=findpeaks(y)

z1=rms(s)

y=selectedfile(450:900)

x=T1(450:900)

s=findpeaks(y)

z2=rms(s)

y=selectedfile(900:1350)

x=T1(900:1350)

s=findpeaks(y)

z3=rms(s)

y=selectedfile(1350:1800)

x=T1(1350:1800)

s=findpeaks(y)

z4=rms(s)

grp=[z1 z2 z3 z4]

c = categorical({'<450','450-900','900-1350','>1350'});

bar(c,grp)

xlabel('Data Sequence')

ylabel('RMS Value') global selectedfile;

global T1;

y=selectedfile(1:450)

x=T1(1:450)

s=findpeaks(y)

z1=rms(s)

y=selectedfile(450:900)

Human Activity Recognition and Analysis using Accelerometer Data

//Take first 450 data

//Find peaks and store it in s

//Find rms of the peaks

x=T1(450:900)

s=findpeaks(y)

z2=rms(s)

y=selectedfile(900:1350)

x=T1(900:1350)

s=findpeaks(y)

z3=rms(s)

y=selectedfile(1350:1800)

x=T1(1350:1800)

s=findpeaks(y)

z4=rms(s)

grp=[z1 z2 z3 z4]

//Taking rms value of 4 groups in an array

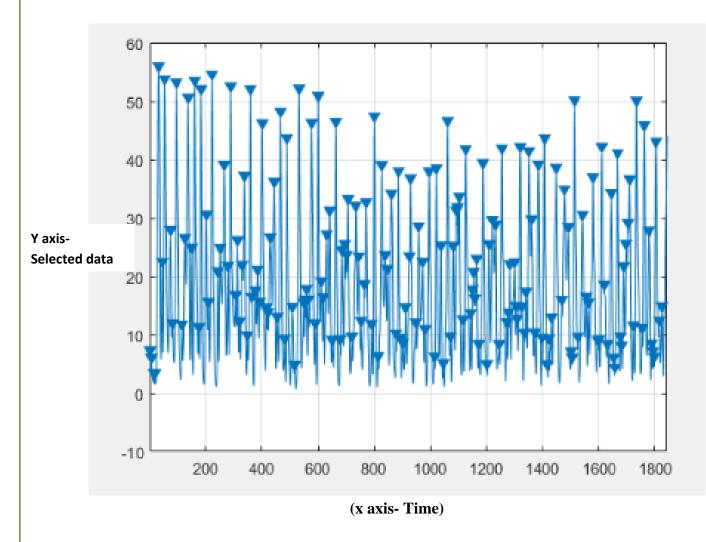
c = categorical({'<450','450-900','900-1350','>1350'});

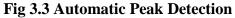
bar(c,grp)

xlabel('Data Sequence')

ylabel('RMS Value')

3.3 AUTOMATIC PEAK DETECTION


Pictorial Representation of Automatic Peak Detection for a sample data


Age: Between 18-40 years

Gender: Female

Activity: Jogging

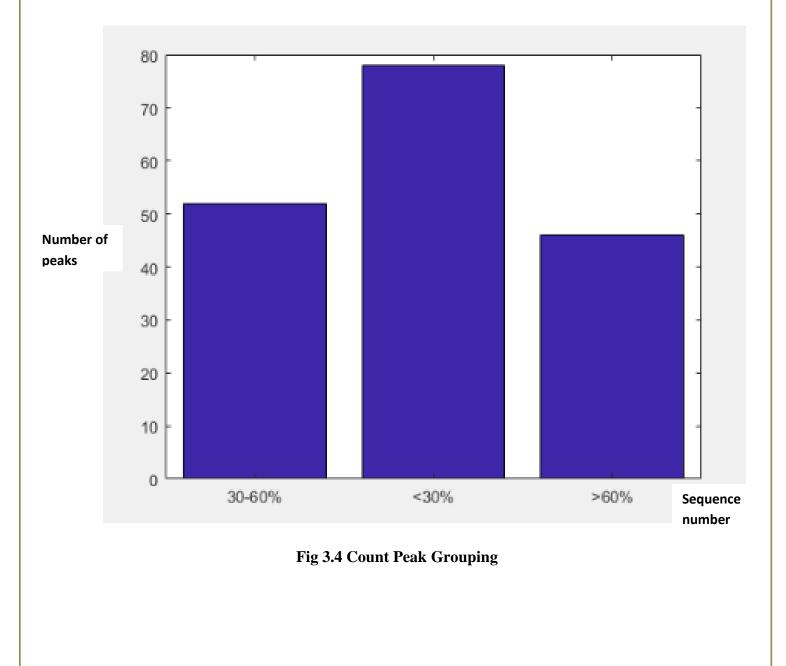
Description: Here we are plotting the peaks of the complete recorded data.

MATLAB CODE for Automatic Peak Detection:

global selectedfile; global T1; y=selectedfile x=T1 plot(x,y) xlabel('x') ylabel('Y') findpeaks(y) //Find peaks Human Activity Recognition and Analysis using Accelerometer Data 27

3.4 COUNT PEAK GROUPING

Pictorial Representation for the Count Peak Grouping for a sample data


Age: Between 18-40 years

Gender: Female

Activity: Walking

Description: Here we are initially calculating the 30% and 60% of the highest peak value and respectively counting the number of peaks that are

1. Below 30% 2. Between 30%-60% 3. More than 60%

MATLAB CODE for Count Peak Grouping:

```
global selectedfile;
global T1;
y=selectedfile
x=T1
max_peak=max(y)
                                              //Find maximum peak value
j=1
k=1
l=1
m_30=max_peak*0.3
                                             //Calculating 30% of maximum peak value
m_60=max_peak*0.6
                                             //Calculating 60% of maximum peak value
peak=findpeaks(y)
for i=1:length(peak)
  if peak(i)<m_30
    grp1(j)=peak(i)
                                                //In grp1 array store peak values which are < 30% of
                                             maximum peak
    j=j+1
  end
  if peak(i)>=m_30 && peak(i)<=m_60
    grp2(k)=peak(i)
                                             //In grp2 array store peak values which are between 30%
                                             and 60% of maximum peak
    k=k+1
  end
  if peak(i)>m_60
    grp3(l)=peak(l)
                                             //In grp3 array store peak values which are>60% of
                                             maximum peak
    l=l+1
  end
end
grp=[j k l]
c = categorical(\{ <30\%', '30-60\%', >60\%' \});
bar(c,grp)
hold on
```

3.5 MAXIMUM-MINIMUM AVERAGE OF PEAKS

Pictorial Representation for Max-min-average of peaks for a sample data

Age: Between 18-40 years

Gender: Female

Activity: Jogging

Description: Here we are calculating the maximum, minimum and average of the peaks for a collected sample data.

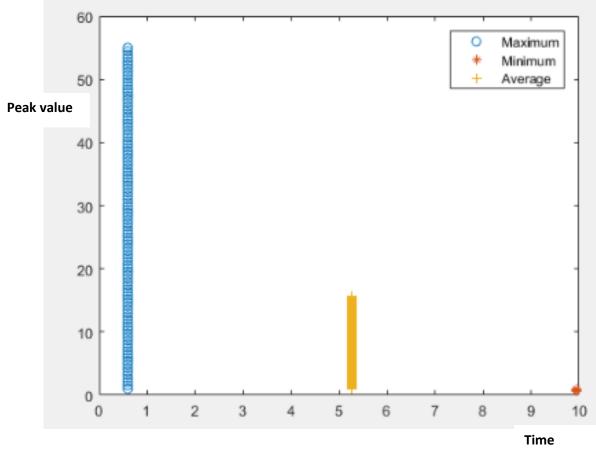
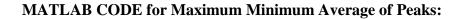
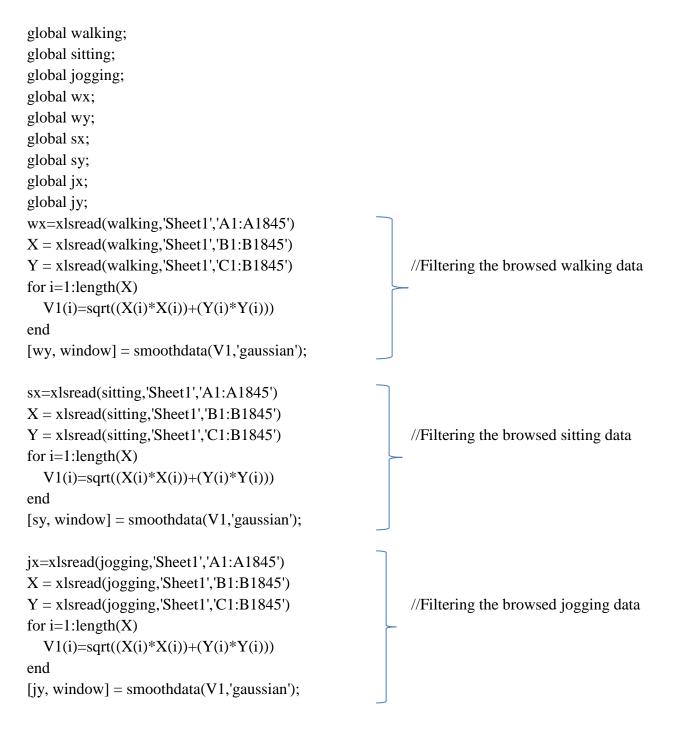



Fig 3.5 Max-min avg of Peaks

global selectedfile; global T1; y=selectedfile x=T1 z=max(y) //Calculate max value acc=linspace(1,z,100) for a=1:length(x) if y(a)==z t=x(a) end Human Activity Recognition and Analysis using Accelerometer Data

```
end
for i=1:100
 time(i)=t
end
plot(time,acc,'o')
hold on
r=min(y)
                                           //Calculate min value
acc2=linspace(1,r,100)
for b=1:length(x)
  if y(b) == r
     s=x(b)
  end
end
for j=1:100
 time2(j)=s
end
plot(time2,acc2,'*')
hold on
r2=mean(y)
                                           //Calculate average value
acc3=linspace(1,r2,100)
m=(t+s)/2
for k=1:100
 tme3(k)=m
end
plot(tme3,acc3,'+')
hold on
```


legend('Maximum','Minimum','Average')

METHODOLOGY FOR IMPLEMENTATION

4. ACTIVITY ANALYSIS

In Activity Analysis, we are recording sample data for three different activities (jogging, walking and sitting) of a single person, next we are filtering out the collected data using a filtering process.

CODE FOR FILTERING PROCESS:

4.1 CHECKING POSITION OF THE FIRST PEAK

Checking position of the first peak for a sample data Age: Between 18-40 years Gender: Female Activity: Walking

```
MATLAB CODE:
global wx;
global wy;
global walk;
global T2;
global accuracy1;
x1=T2
y1=walk
```

x2=wx y2=wy

```
p1=findpeaks(y1)
n1=p1(1)
p1=findpeaks(y2)
n2=p1(1)
d=abs(t1-t2)
```

diff=(d/t1)*100 accuracy1=100-diff //Calculate peaks of base data
//First peak of base data
//Calculate peaks of browsed data
//First peak of browsed data
//Difference in first peak
between base data and browsed data

//calculating accuracy of an activity based on this step

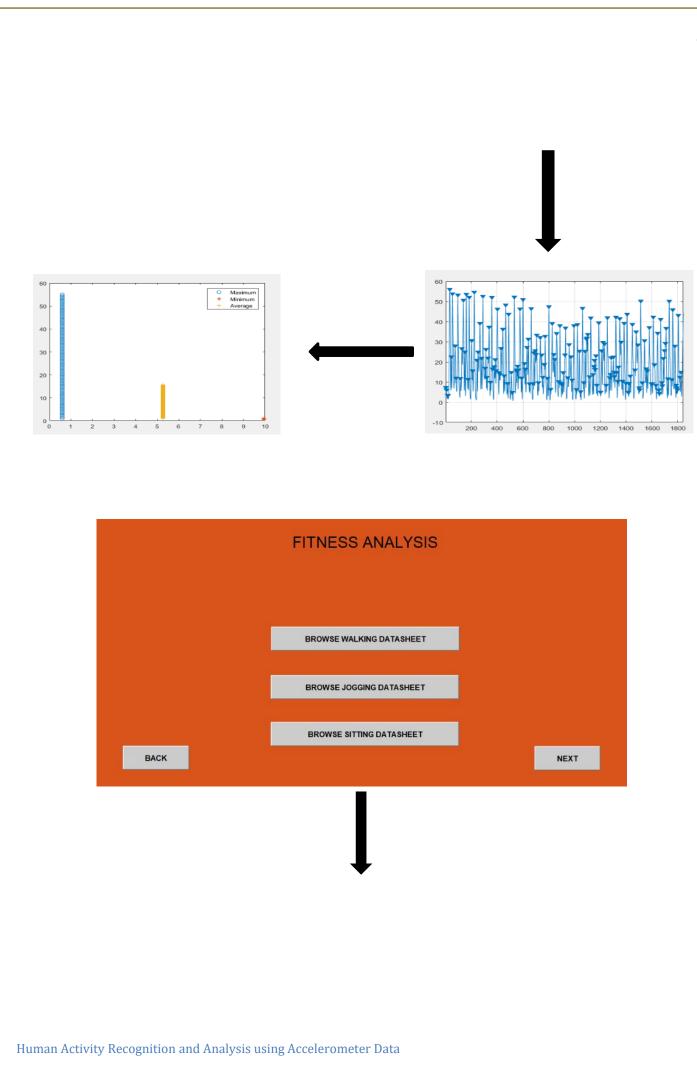
4.2 SUCCESSIVE PEAKS

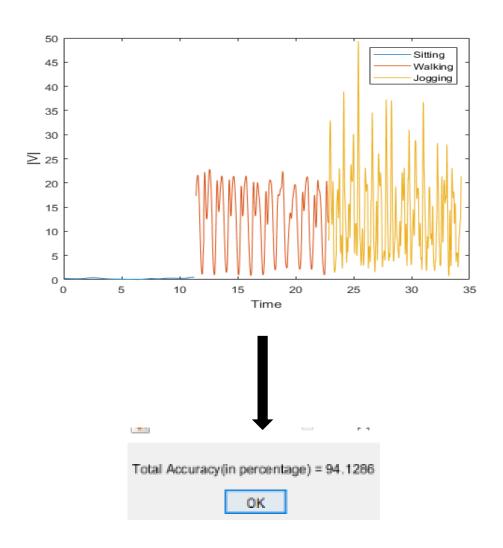
Successive peaks for a sample data Age: Between 18-40 years Gender: Female Activity: Walking

MATLAB CODE:

```
global wx;
global wy;
global walk;
global T2;
global accuracy2;
x1=T2
y1=walk
x2=wx
y2=wy
p1=findpeaks(y1)
                                                          //find peaks of base data
p2=findpeaks(y2)
                                                          //find peaks of browsed data
n1=length(p1)
n2 = length(p2)
sum=0
if(n1>n2)
  for i=2:n2
     d1(i-1)=abs(p1(i)-p1(i-1))
     d2(i-1)=abs(p2(i)-p2(i-1))
  end
else
                                                          //Difference between successive peaks
  for i=2:n1
     d1(i-1)=abs(p1(i)-p1(i-1))
     d2(i-1)=abs(p2(i)-p2(i-1))
  end
end
for i=1:length(d1)
  diff=abs(d1(i)-d2(i))
                                                          //Difference between base data and sample data
  sum=sum+diff
end
len=length(d1)
res=sum/len
accuracy2=100-res
                                                          //calculating accuracy of an activity
                                                            based on this step
```

4.3 MAX-MIN AVERAGE OF PEAKS


Max-min average of peaks for a sample data Age: Between 18-40 years Gender: Female Activity: Walking MATLAB CODE:


```
global selectedfile;
global T1;
y=selectedfile
x=T1
z=max(y)
                                                //Calculate max value
acc=linspace(1,z,100)
for a=1:length(x)
  if y(a) = z
     t=x(a)
  end
end
for i=1:100
 time(i)=t
end
plot(time,acc,'o')
hold on
r=min(y)
                                            //Calculate min value
acc2=linspace(1,r,100)
for b=1:length(x)
  if y(b) == r
     s=x(b)
  end
end
for j=1:100
  time2(j)=s
end
plot(time2,acc2,'*')
hold on
r2=mean(y)
                                            //Calculate average value
acc3=linspace(1,r2,100)
m=(t+s)/2
for k=1:100
 tme3(k)=m
end
plot(tme3,acc3,'+')
hold on
legend('Maximum','Minimum','Average')
Human Activity Recognition and Analysis using Accelerometer Data
```

5. PICTORIAL WORKFLOW FOR THE ACTIVITY RECOGNITION AND ANALYSIS

Human Activity Recognition and Analysis using Accelerometer Data

Fig 5 Pictorial workflow for recognition and analysis

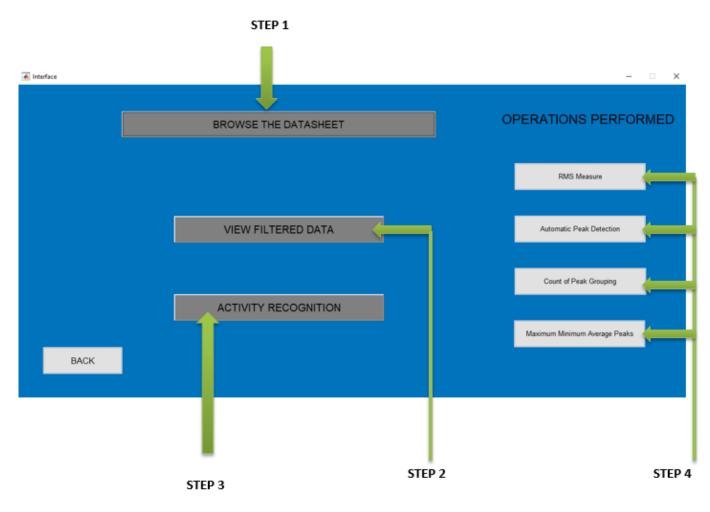
38

6. IMPLEMENTATION DETAILS

HUMAN ACTIVITY F	RECOGNITION SYSTEM
SELECT AGE GROUP	SELECT GENDER
Age Group Below 18 years Between 18 and 40 years Above 40 years	Gender O Female • Male
ACTIVITY RECOGNITION STEP 1	CHECK FITNESS STEP 2
Fig 6	5(a) Home Page

Step 2: Fitness will be checked.

MATLAB CODE FOR THE HOME PAGE


```
function varargout = Home(varargin)
gui_Singleton = 1;
gui_State = struct('gui_Name',
                                  mfilename, ...
           'gui_Singleton', gui_Singleton, ...
           'gui_OpeningFcn', @Home_OpeningFcn, ...
           'gui_OutputFcn', @Home_OutputFcn, ...
           'gui_LayoutFcn', [], ...
           'gui_Callback', []);
if nargin && ischar(varargin{1})
  gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
  [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
  gui_mainfcn(gui_State, varargin{:});
end
function Home_OpeningFcn(hObject, eventdata, handles, varargin)
global walk1;
global sit1;
global jog1;
a=get(handles.age,'SelectedObject')
age1=get(a,'Tag')
b=get(handles.female,'Value')
c=get(handles.male,'Value')
                                                                          //If selected age is below 18 years
if age1=='a1'
                                                                          //and gender is female,
  if b = = 1.0
                                                                          //corresponding base data is selected
     walk1='a1b1walk.xlsx'
     sit1='a2b1sit.xlsx'
    jog1='a1b1jog.xlsx'
  end
end
                                                                        //If selected age is below 18 years and
                                                                        //gender is male
if age1=='a1'
                                                                        //corresponding base data is selected
  if c==1.0
     walk1='a1b2walk.xlsx'
     sit1='a2b1sit.xlsx'
    jog1='a1b2jog.xlsx'
  end
end
if age1=='a2'
                                                                        //If selected age is between 18 and 40 years
  if b==1.0
                                                                        //and gender is female,
     walk1='a2b1walk.xlsx'
                                                                        //corresponding base data is selected
     sit1='a2b1sit.xlsx'
    jog1='a2b1jog.xlsx'
  end
end
if age1=='a2'
                                                                        //If selected age is between 18 and 40
Human Activity Recognition and Analysis using Accelerometer Data
                                                                        //Years and gender is male,
                                                                        //corresponding base data is selected
```

41

```
if c==1.0
    walk1 = 'a2b2walk.xlsx'
    sit1 ='a2b1sit.xlsx'
    jog1 ='a2b2jog.xlsx'
  end
end
if age1=='a3'
                                                                         //If selected age is above 40
  if b==1.0
                                                                         //Years and gender is female,
     walk1='a3b1walk.xlsx'
                                                                         //corresponding base data is selected
     sit1='a2b1sit.xlsx'
    jog1='a3b1jog.xlsx'
  end
end
if age1=='a3'
                                                                         //If selected age is above 40 years
  if c==1.0
                                                                         //and gender is male,
     walk1='a3b2walk.xlsx'
                                                                         //corresponding base data is selected
     sit1='a2b1sit.xlsx'
    jog1='a3b2jog.xlsx'
  end
end
run('Interface.m')
function checkfitness_Callback(hObject, eventdata, handles)
```

run('InterfaceFitness.m')

INTERFACE FOR THE ACTIVITY RECOGNITION

Fig 6(b) Activity analysis and recognition

- **Step 1:** The sample datasheet needs to be selected.
- Step 2: Graphical representation of the selected data is displayed.
- Step 3: The recognized activity is displayed.
- Step 4: Graphical representation of the mentioned operations is performed.

MATLAB CODE FOR "BROWSE THE DATASHEET"

global selectedfile1; [file,path] = uigetfile('C:\Users\USER\Desktop\2.4.2018',... 'Select an Excel File') selectedfile1 = fullfile(path,file);

INTERFACE FOR THE ACTIVITY ANALYSIS

Step 1: The sample datasheet for activity: 'walking' needs to be selected.

Step 2: The sample datasheet for activity:'jogging' needs to be selected.

Step 3: The sample datasheet for activity: 'sitting' needs to be selected.

MATLAB CODE FOR BROWSING WALKING DATASHEET

global walking;

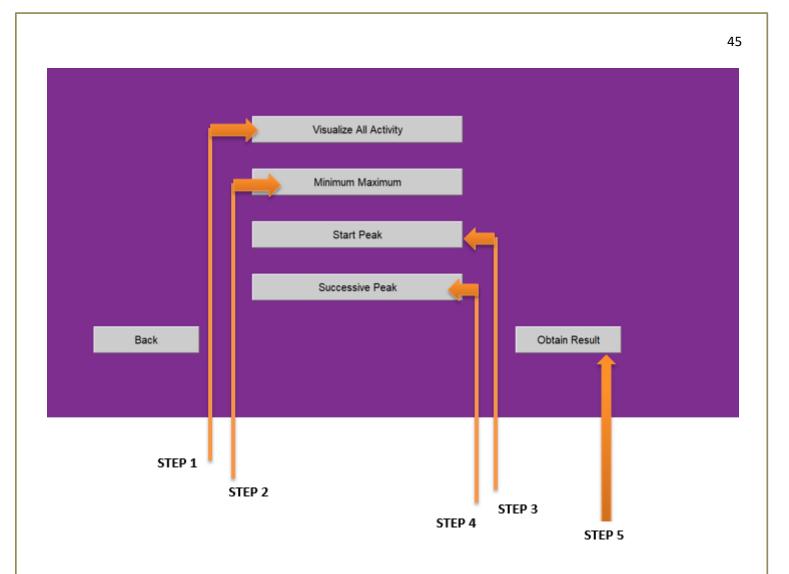
[file,path] = uigetfile('C:\Users\USER\Desktop\2.4.2018\BrowseExcelSheet',... 'Select an Excel File') //browse the excel sheet from this path

walking = fullfile(path,file);

MATLAB CODE FOR BROWSING JOGGING DATASHEET

global jogging;

[file,path] = uigetfile('C:\Users\USER\Desktop\2.4.2018',... 'Select an Excel File')


jogging = fullfile(path,file);

MATLAB CODE FOR BROWSING SITTING DATASHEET

global sitting;

[file,path] = uigetfile('C:\Users\USER\Desktop\2.4.2018',... 'Select an Excel File')

sitting = fullfile(path,file);

Fig 6(d) Fitness Analysis

- Step 1: Graphical representation of all activities.
- Step 2: Accuracy based on maximum-minimum peak.
- Step 3: Accuracy based on the first peak.
- Step 4: Accuracy based on successive peak.
- Step 5: The final accuracy is displayed based on all operations performed.

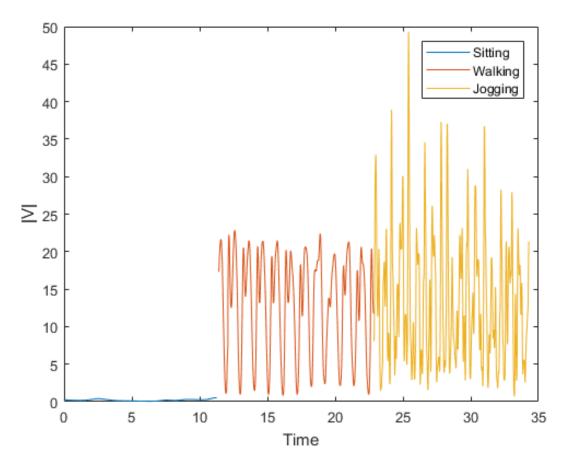


Fig 6(e) Combined visualization of all activities

MATLAB CODE:

global walking; global jogging; global sitting; vSit=xlsread(sitting,'Sheet1','E1:E600'); vWalk=xlsread(walking,'Sheet1','E601:E1200'); vJog=xlsread(jogging,'Sheet1','E1201:E1800'); tSit=xlsread(sitting,'Sheet1','A1:A600'); tWalk=xlsread(walking,'Sheet1','A601:A1200'); tJog=xlsread(jogging,'Sheet1','A1201:A1800');

plot(tSit,vSit) hold on plot(tWalk,vWalk) hold on plot(tJog,vJog) xlabel('Time') ylabel('|V|') legend('Sitting','Walking','Jogging')

Minimum Maximum	
💽 – 🗆 🗙	
Total Accuracy(in percentage) = 94.1286	
Successive Peak	
	Obtain Result

Fig 6(f) Obtaining fitness accuracy

MATLAB CODE FOR OBTAINING RESULT

```
function varargout = Comparision(varargin)
gui_Singleton = 1;
gui_State = struct('gui_Name',
                                 mfilename, ...
           'gui_Singleton', gui_Singleton, ...
           'gui_OpeningFcn', @Comparision_OpeningFcn, ...
           'gui_OutputFcn', @Comparision_OutputFcn, ...
           'gui_LayoutFcn', [], ...
           'gui_Callback', []);
if nargin && ischar(varargin{1})
  gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
  [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
  gui_mainfcn(gui_State, varargin{:});
end
function Comparision_OpeningFcn(hObject, eventdata, handles, varargin)
handles.output = hObject;
guidata(hObject, handles);
function varargout = Comparision_OutputFcn(hObject, eventdata, handles)
varargout{1} = handles.output;
```

Human Activity Recognition and Analysis using Accelerometer Data

function minmax_Callback(hObject, eventdata, handles)
global acc1;
global acc2;
global acc3;
run('MaxMinCompare.m')
run('MaxMinCompareJog.m')
run('MaxMinCompareSit.m')
acc1=(accuracy3+accuracySit3+accuracyJog3)/3
msgbox(sprintf('Accuracy(in percentage) = %g',acc1))

function startpeak_Callback(hObject, eventdata, handles)
global acc1;
global acc2;
global acc3;
run('StartPeakCompare.m')
run('StartPeakCompareJog.m')
run('StartPeakCompareSit.m')
acc2=(accuracy1+accuracySit1+accuracyJog1)/3
msgbox(sprintf('Accuracy(in percentage) = %g',acc2))

function successive_Callback(hObject, eventdata, handles)
global acc1;
global acc2;
global acc3;
run('SuccessivePeakCompare.m')
run('SuccessivePeakCompareJog.m')
run('SuccessivePeakCompareSit.m')
acc3=(accuracy2+accuracySit2+accuracyJog2)/3
msgbox(sprintf('Accuracy(in percentage) = %g',acc3))

function result_Callback(hObject, eventdata, handles) global acc1; global acc2; global acc3; accuracy=(acc1+acc2+acc3)/3 msgbox(sprintf('Total Accuracy(in percentage) = %g %',accuracy))

function back_Callback(hObject, eventdata, handles)
run('InterfaceFitness.m')

//Accuracy of 3 activities based on maximum,minimum peaks

//Accuracy of 3 activities based on start peak

//Accuracy of 3 activities based on successive peak difference

//Total Accuracy of 3 activities

CONCLUSION

- We have successfully collected the data through hardware.
- Implemented appropriate visualisation of the collected data.
- Filter chosen correctly filters out the noise in the channel and noise due to gravitational acceleration.
- The used time-window correctly compares the data.
- Expected feature analysis has been successfully implemented.(peak detection)
- Expected performance outcome has been achieved.
- An easy access GUI has been created.
- The developed system can classify the activities like sitting, jogging and walking.
- An informative message with percentage about the overall fitness can be made.
- We have ultimately reached our basic aim of the project to classify and analyse the different human activities and to produce performance result using the GUI.

FUTURE SCOPE

- Clear distinction between almost similar types of activities like StairCaseDown-and-Walking and Jogging-and-Running.
- Implementation of complete automated on-chip system for data collection and analysis.
- Implementation of wireless client-server architecture.
- Constant monitoring and implementation of variable-length time-window for better analysis.
- Invariant system analysis with respect to the position of the hardware.
- Different other human physical analysis like heartbeat, pressure, specific disease like asthma and other medical issues.
- Accounting other prospective of data classification, application of digital filters with variable filter size.
- Analysis over the frequency domain may improve the accuracy of the system.

REFERENCES

1. Aminian, K and Robert, Ph and Buchser, EE and Rutschmann, B and Hayoz, D and Depairon, M Physical activity monitoring based on accelerometry: validation and comparison with video observation, Medical & biological engineering & computing, 1999; 37:3–304.

2. Bao, Ling and Intille, Stephen S, Pervasive computing, Activity recognition from user-annotated acceleration data, 2004, Springer.

3.Casale, Pierluigi and Pujol, Oriol and Radeva, Petia, Human activity recognition from accelerometer data using a wearable device, Pattern Recognition and Image Analysis,2011;289, Springer.

4.Khan, Adil Mehmood and Lee, Young-Koo and Lee, Sungyoung Y and Kim, Tae-Seong, A triaxial accelerometerbased physical-activity recognition via augmented-signal features and a hierarchical recognizer, Information Technology in Biomedicine, IEEE Transactions on,2010;14:5–1166.

5.Lester, Jonathan and Choudhury, Tanzeem and Borriello, Gaetano, A practical approach to recognizing physical activities, Pervasive Computing, 2006; Springer.

6.Kwapisz, Jennifer R and Weiss, Gary M and Moore, Samuel A, Activity recognition using cell phone accelerometers, ACM SigKDD Explorations Newsletter, 2011; 12:2–74.

7. Ravi, Nishkam and Dandekar, Nikhil and Mysore, Preetham and Littman, Michael L, Activity recognition from accelerometer data, AAAI, 2005; 5–1541.

8. Mannini, Andrea and Sabatini, Angelo Maria, Machine learning methods for classifying human physical activity from on-body accelerometers, Sensors, 2010; 10:2–1154.

9. Ruta, Dymitr and Gabrys, Bogdan, Classifier selection for majority voting, Information fusion, 2005; 6:1–63.

10. Gyllensten, Illapha Cuba and Bonomi, Alberto G, Identifying types of physical activity with a single accelerometer: evaluating laboratory-trained algorithms in daily life, Biomedicl Engineering, IEEE Trnsaction on, 2011; 58:9–2656.

11. Alelyani, Salem and Tang, Jiliang and Liu, Huan, Feature selection for clustering: A review, Data Clustering: Algorithms and Applications, 2013; 29.

12. Fujiki, Yuichi, iPhone as a physical activity measurement platform, CHI'10 Extended Abstracts on Human Factors in Computing Systems, 2010; 4315.

13.Krishnan, Narayanan C and Colbry, Dirk and Juillard, Colin and Panchanathan, Sethuraman, Real time human activity recognition using tri-axial accelerometers, Sensors, signals and information processing workshop, 2008.

14. Foerster, Friedrich and Fahrenberg, Jochen, Motion pattern and posture: correctly assessed by calibrated accelerometers, Behavior research methods, instruments, & computers, 2000; 32:3–450.

15. Westerterp, Klaas R, Assessment of physical activity: a critical appraisal, European journal of applied physiology, 2009; 105:6–823.

16. Poppe, Ronald, A survey on vision-based human action recognition, Image and vision computing, 2010

17. Kwapisz, Jennifer R and Weiss, Gary M and Moore, Samuel A, Cell phone-based biometric identification, Biometrics: Theory Applications and Systems (BTAS), 2010 Fourth IEEE International Conference on, 2010.

Human Activity Recognition and Analysis using Accelerometer Data

Human Activity Recognition and Analysis using Accelerometer Data