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1. Abstract 

 
 

Sentiment Analysis also known as Opinion Mining refers to the use of natural language 

processing, text analysis to systematically identify, extract, quantify, and study affective 

states and subjective information. Sentiment analysis is widely applied to reviews and 

survey responses, online and social media, and healthcare materials for applications that 

range from marketing to customer service to clinical medicine.   

 

In this project, we aim to perform Sentiment Analysis of product based reviews. Data used 

in this project are online product reviews collected from “amazon.com”. We expect to do 

review-level categorization of review data with promising outcomes. 

 

 

 

 

 

 

 

 

 

 

 



 
7 

 

 

 

1. Introduction 

 
                      Sentiment is an attitude, thought, or judgment prompted by feeling. 

Sentiment analysis, which is also known as opinion mining, studies people’s 

sentiments towards certain entities. From a user’s perspective, people are able to post 

their own content through various social media, such as forums, micro-blogs, or 

online social networking sites. From a researcher’s perspective, many social media 

sites release their application programming interfaces (APIs), prompting data 

collection and analysis by researchers and developers. However, those types of 

online data have several flaws that potentially hinder the process of sentiment 

analysis. The first flaw is that since people can freely post their own content, the 

quality of their opinions cannot be guaranteed. he second flaw is that ground truth of 

such online data is not always available. A ground truth is more like a tag of a certain 

opinion, indicating whether the opinion is positive, negative, or neutral.  

 
“It is a quite boring movie…….. but the scenes were good enough. ” 

  The given line is a movie review that states that “it” (the movie) is 

quite boring but the scenes were good. Understanding such sentiments require 

multiple tasks.  

          Hence, SENTIMENTAL ANALYSIS is a kind of text classification 

based on Sentimental Orientation (SO) of opinion they contain. 

Sentiment analysis of product reviews has recently become very popular in text 

mining and computational linguistics research. 

 

 Firstly, evaluative terms expressing opinions must be extracted from the 

review.  

 

 Secondly, the SO, or the polarity, of the opinions must be determined.  

 

 Thirdly, the opinion strength, or the intensity, of an opinion should also be 

determined. 

 

 Finally, the review is classified with respect to sentiment classes, such as 

Positive and Negative, based on the SO of the opinions it contains. 
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2. Review of Literature 

 
The most fundamental problem in sentiment analysis is the sentiment polarity 

categorization, by considering a dataset containing over 5.1 million product reviews 

from Amazon.com with the products belonging to four categories. 

 

A max-entropy POS tagger is used in order to classify the words of the sentence, an 

additional python program to speed up the process. The negation words like no, not, 

and more are included in the adverbs whereas Negation of Adjective and Negation of 

Verb are specially used to identify the phrases. 

 

The following are the various classification models which are selected for 

categorization: Naïve Bayesian, Random Forest, Logistic Regression and Support 

Vector Machine. 

 

For feature selection, Pang and Lee suggested to remove objective sentences by 

extracting subjective ones. They proposed a text-categorization technique that is able 

to identify subjective content using minimum cut. Gann et al. selected 6,799 tokens 

based on Twitter data, where each token is assigned a sentiment score, namely TSI 

(Total Sentiment Index), featuring itself as a positive token or a negative token. 

Specifically, a TSI for a certain token is computed as: 

 

 

where p is the number of times a token appears in positive tweets and n is the 

number of times a token appears in negative tweets    is the ratio of total  

  

number of positive tweets over total number of negative tweets. 
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3. Objective of the Project 

 
 Scrapping product reviews on various websites featuring various products 

specifically amazon.com. 

 Analyze and categorize review data. 

 Analyze sentiment on dataset from document level (review level). 

 Categorization or classification of opinion sentiment into- 

 Positive 

 Negative 
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4. System Design 

 

Hardware Requirements: 

 Core i5/i7 processor 

 At least 8 GB RAM 

 At least 60 GB of Usable Hard Disk Space 

 

Software Requirements: 

 Python 3.x 

 Anaconda Distribution 

 NLTK Toolkit 

 UNIX/LINUX Operating System. 

 

Data Information: 

 

 The Amazon reviews dataset consists of reviews from amazon. The data span 

a period of 18 years, including ~35 million reviews up to March 2013. 

Reviews include product and user information, ratings, and a plaintext review. 

For more information, please refer to the following paper: J. McAuley and J. 

Leskovec. Hidden factors and hidden topics: understanding rating dimensions 

with review text. RecSys, 2013. 

 

 The Amazon reviews full score dataset is constructed by Xiang Zhang 

(xiang.zhang@nyu.edu) from the above dataset. It is used as a text 

classification benchmark in the following paper: Xiang Zhang, Junbo Zhao, 

Yann LeCun. Character-level Convolutional Networks for Text Classification. 

Advances in Neural Information Processing Systems 28 (NIPS 2015). 

 

 The Amazon reviews full score dataset is constructed by randomly taking 

200,000 samples for each review score from 1 to 5. In total there are 

1,000,000 samples. 
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Data Format: 

 The dataset we will use is .json file. The sample of the dataset is given below. 

{  

          "reviewSummary":  "Surprisingly delightful",  

          "reviewText": “ This is a first read filled with unexpected humor and profound                                                                                                                                    

insights into the art of politics and policy. In brief, it is sly, wry, and wise. ”, 

  "reviewRating":   “4”, 

   

}  
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5. Methodology for Implementation 

(Formulation/Algorithm) 

 

DATA COLLECTION: 

  Data which means product reviews collected from amazon.com from May 

1996 to July 2014. Each review includes the following information: 1) reviewer ID; 2) 

product ID; 3) rating; 4) time of the review; 5) helpfulness; 6) review text. Every rating is 

based on a 5-star scale, resulting all the ratings to be ranged from 1-star to 5-star with no 

existence of a half-star or a quarter-star. 

 

SENTIMENT SENTENCE EXTRACTION & POS TAGGING: 

  Tokenization of reviews after removal of STOP words which mean nothing 

related to sentiment is the basic requirement for POS tagging. After proper removal of 

STOP words like “am, is, are, the, but” and so on the remaining sentences are converted in 

tokens. These tokens take part in POS tagging  

  In natural language processing, part-of-speech (POS) taggers have been 

developed to classify words based on their parts of speech. For sentiment analysis, a POS 

tagger is very useful because of the following two reasons: 1) Words like nouns and 

pronouns usually do not contain any sentiment. It is able to filter out such words with the 

help of a POS tagger; 2) A POS tagger can also be used to distinguish words that can be 

used in different parts of speech. 

 

NEGETIVE PHRASE IDENTIFICATION: 

  Words such as adjectives and verbs are able to convey opposite sentiment 

with the help of negative prefixes. For instance, consider the following sentence that was 

found in an electronic device’s review: “The built in speaker also has its uses but so far 

nothing revolutionary." The word, “revolutionary" is a positive word according to the list in. 

However, the phrase “nothing revolutionary" gives more or less negative feelings. 

Therefore, it is crucial to identify such phrases. In this work, there are two types of phrases 

have been identified, namely negation-of-adjective (NOA) and negation-of-verb (NOV). 
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SENTIMENT CLASSIFICATION ALGORITHMS: 

 

Naïve Bayesian classifier: 

The Naïve Bayesian classifier works as follows: Suppose that there exist a set of 

training data, D, in which each tuple is represented by an n-dimensional feature 

vector, X=x 1,x 2,..,x n , indicating n measurements made on the tuple from n attributes or 

features. Assume that there are m classes, C 1,C 2,...,C m . Given a tuple X, the classifier will 

predict that X belongs to C i if and only if: P(C i |X)>P(C j |X), 

where i,j∈[1,m]a n d i≠j. P(C i |X) is computed as: 

 

Random forest 

The random forest classifier was chosen due to its superior performance over a single 

decision tree with respect to accuracy. It is essentially an ensemble method based on 

bagging. The classifier works as follows: Given D, the classifier firstly creates k bootstrap 

samples of D, with each of the samples denoting as Di . A Di  has the same number of tuples 

as D that are sampled with replacement from D. By sampling with replacement, it means 

that some of the original tuples of D may not be included in Di , whereas others may occur 

more than once. The classifier then constructs a decision tree based on each Di . As a result, 
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a “forest" that consists of k decision trees is formed.  

To classify an unknown tuple, X, each tree returns its class prediction counting as one vote. 

The final decision of X’s class is assigned to the one that has the most votes. 

The decision tree algorithm implemented in scikit-learn is CART (Classification and 

Regression Trees). CART uses Gini index for its tree induction. For D, the Gini index is 

computed as: 

 

Where pi  is the probability that a tuple in D belongs to class C i . The Gini index measures 

the impurity of D. The lower the index value is, the better D was partitioned. 

 

Support vector machine 

Support vector machine (SVM) is a method for the classification of both linear and 

nonlinear data. If the data is linearly separable, the SVM searches for the linear optimal 

separating hyperplane (the linear kernel), which is a decision boundary that separates data 

of one class from another. Mathematically, a separating hyper plane can be written 

as: W·X+b=0, where W is a weight vector and W=w1,w2,...,w n. X is a training tuple. b is a 

scalar. In order to optimize the hyperplane, the problem essentially transforms to the 

minimization of ∥W∥, which is eventually computed as: 

    where αi  are numeric parameters, and yi  are labels based on support 

vectors, Xi  . 

That is: if yi =1 then        

     

if y i =−1 then 
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If the data is linearly inseparable, the SVM uses nonlinear mapping to transform the data 

into a higher dimension. It then solve the problem by finding a linear hyperplane. Functions 

to perform such transformations are called kernel functions. The kernel function selected for 

our experiment is the Gaussian Radial Basis Function (RBF): 

 

 

where Xi are support vectors, X j are testing tuples, and γ is a free parameter that uses the 

default value from scikit-learn in our experiment. Figure shows a classification example of 

SVM based on the linear kernel and the RBF kernel on the next page- 

 

 

Logistic Regression 

Logistic regression predicts the probability of an outcome that can only have two  

values (i.e. a dichotomy). The prediction is based on the use of one or several predictors 

(numerical and categorical). A linear regression is not appropriate for predicting the  

value of a binary variable for two reasons: 
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 A linear regression will predict values outside the acceptable range (e.g. predicting  

probabilities outside the range 0 to 1) 

 Since the dichotomous experiments can only have one of two possible values 

for each experiment, the residuals will not be normally distributed about  

the predicted line. 

  
 

On the other hand, a logistic regression produces a logistic curve, which is limited to 

values between 0 and 1. Logistic regression is similar to a linear regression, but the  

curve is constructed using the natural logarithm of the “odds” of the target variable,  

rather than the probability. Moreover, the predictors do not have to be normally  

distributed or have equal variance in each group. 

  

 Logistic regression uses maximum likelihood estimation (MLE) to obtain the model  

coefficients that relate predictors to the target. After this initial function is estimated,  

the process is repeated until LL (Log Likelihood) does not change significantly.  
  

   

 

  

 

http://www.saedsayad.com/further_readings.htm
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6. Implementation Details 

The training of dataset consists of the following steps: 

 Unpacking of data: The huge dataset of reviews obtained from amazon.com 

comes in a .json file format. A small python code has been implemented in order to 

read the dataset from those files and dump them in to a pickle file for easier and 

fastaccess and object serialization. 

 

Hence initial fetching of data is done in this section using Python File Handlers.  

 

 

 Preparing Data for Sentiment Analysis:  

          i) The pickle file is hence loaded in this step and the data besides the one used 

for sentiment analysis is removed. As shown in our sample dataset in Page 11, there 

are a lot of columns in the data out of which only rating and text review is what we 

require. So, the column, “reviewSummary” is dropped from the data file. 

 

ii) After that, the review ratings which are 3 out of 5 are removed as they 

signify neutral review, and all we are concerned of is positive and negative reviews. 

iii) The entire task of preprocessing the review data is handled by this 
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utility class- “NltkPreprocessor”. 

 

 

 

iv) The time required to prepare the following data is hence displayed. 

The time taken to preprocess the data is calculated and displayed 

 Preprocessing Data:This is a vital part of training the dataset. Here Words present 

in the file are accessed both as a solo word and also as pair of words. Because, for 

example the word “bad” means negative but when someone writes “not bad” it refers 

to as positive. In such cases considering single word for training data will work 

otherwise. So words in pairs are checked to find the occurrence to modifiers before 
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any adjective which if present which might provide a different meaning to the 

outlook. 

 

 

 

 Training Data/ Evaluation:The main chunk of code that does the whole 

evaluation of sentimental analysis based on the preprocessed data is a part of this. 

The following are the steps followed: 

 

i) The Accuracy, Precision, Recall, and Evaluation time is calculated and displayed. 

 ii) Navie Bayes, Logistic Regression, Linear SVM and Random forest classifiers are 

applied on the dataset for evaluation of sentiments. 

 iii) Prediction of test data is done and Confusion Matrix of prediction isdisplayed. 

iv) Total positive and negative reviews are counted. 

v) A review like sentence is taken as input on the console and if positive the console gives 1 

as output and 0 for negative input. 
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7. Results and Sample Output 
 

            The ultimate outcome of this Training of Public reviews dataset is that, the 

machine is capable of judging whether an entered sentence bears positive response or 

negative response.  

             Precision (also called positive predictive value) is the fraction of relevant 

instances among the retrieved instances, while Recall (also known as sensitivity) is 

the fraction of relevant instances that have been retrieved over the total amount of 

relevant instances. Both precision and recall are therefore based on an understanding 

and measure of relevance. 

 
 

 
              F1 score (also F-score or F-measure) is a measure of a test's accuracy. It 

considers both the precision p and the recall r of the test to compute the score: p is 

the number of correct positive results divided by the number of all positive results 

returned by the classifier, and r is the number of correct positive results divided by 

the number of all relevant samples (all samples that should have been identified as 

positive). The F1 score is the harmonic average of the precision and recall, where an 

F1 score reaches its best value at 1 (perfect precision and recall) and worst at 0. 

 

 
            In statistics, a receiver operating characteristic curve, i.e. ROC curve, is a 

graphical plot that illustrates the diagnostic ability of a binary classifier system as its 

discrimination threshold is varied. The Total Operating Characteristic (TOC) 

expands on the idea of ROC by showing the total information in the two-by-two 

contingency table for each threshold. ROC gives only two bits of relative 

information for each threshold, thus the TOC gives strictly more information than the 

ROC.  

https://en.wikipedia.org/wiki/Positive_predictive_value
https://en.wikipedia.org/wiki/Sensitivity_and_specificity
https://en.wikipedia.org/wiki/Relevance
https://en.wikipedia.org/wiki/Precision_(information_retrieval)
https://en.wikipedia.org/wiki/Recall_(information_retrieval)
https://en.wikipedia.org/wiki/Precision_and_recall
https://en.wikipedia.org/wiki/Graph_of_a_function
https://en.wikipedia.org/wiki/Binary_classifier
https://en.wikipedia.org/wiki/Total_Operating_Characteristic
https://en.wikipedia.org/wiki/Contingency_table
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True 
Negative False Positive

False 
Negative

True Positive

         When using normalized units, the area under the curve (often referred to as 

simply the AUC) is equal to the probability that a classifier will rank a randomly 

chosen positive instance higher than a randomly chosen negative one (assuming 

'positive' ranks higher than 'negative'). This can be seen as follows: the area under the 

curve is given by (the integral boundaries are reversed as large T has a lower value 

on the x-axis). 

 
 

          The machine evaluates the accuracy of training the data along with precision 

Recall and F1 

          The Confusion matrix of evaluation is calculated. 

          It is thus capable of judging an externally written review as positive or 

negative. 

          A positive review will be marked as [1], and a negative review will be hence 

marked as [0]. 

 

Results obtained using Hold-out Strategy(Train-Test split) [values rounded upto 

2 decimal places]. 

 

Name of 

classifier 

F1 Accuracy Precision Recall ROC AUC 

Multinomial 

NB 

85.25% 85.31% 85.56% 84.95% 85.31% 

Logistic 

Regression 

88.12% 88.05% 87.54% 88.72% 88.05% 

Linear  

SVC 

88.12% 88.11% 87.59% 88.80% 88.11% 

Random 

Forest 

82.43% 81.82% 79.74% 85.30% 81.83% 

 

The Confusion Matrix Format is as follows:          
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The Confusion Matrix of Each Classifier are as follows:  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

68556
11470

12032 67942

69928
10098

9023 70951

69963
10063

8955 17019

62695
17331

11749 68225

Classifier 1: Multinomial NB Classifier 2: Logistic Regression 

  Classifier 4: Random Forest         Classifier 3: Liner SVC 
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The following are the images of such sample output after successful dataset training  

using the classifiers: 
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The Bar Graph showing the Frequency of Ratings in the dataset 

 

 

 

 

 

 

 

 

This Bar graph shows the score of each classifier after successful training. The parameters 

be: F1 Score, Accuracy, Precision, Recall and Roc-Auc. 
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8. Conclusion 

 

 

Sentiment analysis deals with the classification of texts based on the sentiments they 

contain. This article focuses on a typical sentiment analysis model consisting of three 

core steps, namely data preparation, review analysis and sentiment classification, and 

describes representative techniques involved in those steps. 

 

 Sentiment analysis is an emerging research area in text mining and computational 

linguistics, and has attracted considerable research attention in the past few years. 

Future research shall explore sophisticated methods for opinion and product feature 

extraction, as well as new classification models that can address the ordered labels 

property in rating inference. Applications that utilize results from sentiment analysis 

is also expected to emerge in the near future. 
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Appendix 

Code: 

Loading the dataset: 

import json 

import pickle 

import numpy as np 

from matplotlib import pyplot as plt 

from textblob import TextBlob 

 

# fileHandler = open('datasets/reviews_digital_music.json', 'r') 

# reviewDatas = fileHandler.read().split('\n') 

# reviewText = [] 

# reviewRating = [] 

 

# for review in reviewDatas: 

#  if review == "": 

#   continue 

#  r = json.loads(review) 

#  reviewText.append(r['reviewText']) 

#  reviewRating.append(r['overall']) 

 

# fileHandler.close() 

# saveReviewText = open('review_text.pkl', 'wb') 

# saveReviewRating = open('review_rating.pkl','wb') 

# pickle.dump(reviewText, saveReviewText) 

# pickle.dump(reviewRating, saveReviewRating) 

reviewTextFile = open('review_text.pkl', 'rb') 
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reviewRatingFile = open('review_rating.pkl', 'rb') 

reviewText = pickle.load(reviewTextFile) 

reviewRating = pickle.load(reviewRatingFile) 

# print(len(reviewText)) 

# print(reviewText[0]) 

# print(reviewRating[0]) 

# ratings = np.array(reviewRating) 

 plt.hist(ratings, bins=np.arange(ratings.min(), ratings.max()+2)-0.5, rwidth=0.7) 

plt.xlabel('Rating', fontsize=14) 

 plt.ylabel('Frequency', fontsize=14) 

 plt.title('Histogram of Ratings', fontsize=18) 

plt.show() 

lang = {} 

i = 0 

for review in reviewText: 

 tb = TextBlob(review) 

 l = tb.detect_language() 

 if l != 'en': 

  lang.setdefault(l, []) 

  lang[l].append(i) 

  print(i, l) 

 i += 1 

print(lang) 

 

Scrapping data: 

from selenium import webdriver 

from selenium.webdriver.chrome.options import Options 

from bs4 import BeautifulSoup 

import openpyxl 

class Review(): 

 def __init__(self): 
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  self.rating="" 

  self.info="" 

  self.review="" 

def scrape(): 

 options = Options() 

 options.add_argument("--headless") # Runs Chrome in headless mode. 

 options.add_argument('--no-sandbox') # # Bypass OS security model 

 options.add_argument('start-maximized') 

 options.add_argument('disable-infobars') 

 options.add_argument("--disable-extensions") 

 driver=webdriver.Chrome(executable_path=r'C:\chromedriver\chromedriver.exe') 

 url='https://www.amazon.com/Moto-PLUS-5th-Generation-Exclusive/product-

reviews/B0785NN142/ref=cm_cr_arp_d_paging_btm_2?ie=UTF8&reviewerType=all_reviews&pageNumb

er=5' 

 driver.get(url) 

 

 soup=BeautifulSoup(driver.page_source,'lxml') 

 ul=soup.find_all('div',class_='a-section review') 

 review_list=[] 

 for d in ul: 

  a=d.find('div',class_='a-row') 

  sib=a.findNextSibling() 

  b=d.find('div',class_='a-row a-spacing-medium review-data') 

  '''print sib.text''' 

  new_r=Review() 

  new_r.rating=a.text 

  new_r.info=sib.text 

  new_r.review=b.text 

   

  review_list.append(new_r) 

 driver.quit() 

 return review_list 

def main():  
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 m = scrape() 

 i=1 

 for r in m: 

  

  book = openpyxl.load_workbook('Sample.xlsx') 

  sheet = book.get_sheet_by_name('Sample Sheet') 

  sheet.cell(row=i, column=1).value = r.rating 

  sheet.cell(row=i, column=1).alignment = openpyxl.styles.Alignment(horizontal='center', 

vertical='center', wrap_text=True) 

  sheet.cell(row=i, column=3).value = r.info 

  sheet.cell(row=i, column=3).alignment = openpyxl.styles.Alignment(horizontal='center', 

vertical='center', wrap_text=True) 

  sheet.cell(row=i, column=5).value = r.review.encode('utf-8') 

  sheet.cell(row=i, column=5).alignment = openpyxl.styles.Alignment(horizontal='center', 

vertical='center', wrap_text=True) 

  book.save('Sample.xlsx') 

  i=i+1    

if __name__ == '__main__': 

    main() 

 

Preprocessing Data: 

import string 

from nltk.corpus import stopwords as sw 

from nltk.corpus import wordnet as wn 

from nltk import wordpunct_tokenize 

from nltk import sent_tokenize 

from nltk import WordNetLemmatizer 

from nltk import pos_tag 

class NltkPreprocessor: 

 def __init__(self, stopwords = None, punct = None, lower = True, strip = True): 

  self.lower = lower 

  self.strip = strip 

  self.stopwords = stopwords or set(sw.words('english')) 
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  self.punct = punct or set(string.punctuation) 

  self.lemmatizer = WordNetLemmatizer() 

 

 def tokenize(self, document): 

  tokenized_doc = [] 

 

  for sent in sent_tokenize(document): 

   for token, tag in pos_tag(wordpunct_tokenize(sent)): 

    token = token.lower() if self.lower else token 

    token = token.strip() if self.strip else token 

    token = token.strip('_0123456789') if self.strip else token 

    # token = re.sub(r'\d+', '', token) 

 

    if token in self.stopwords: 

     continue 

 

    if all(char in self.punct for char in token): 

     continue 

 

    lemma = self.lemmatize(token, tag) 

    tokenized_doc.append(lemma) 

 

  return tokenized_doc 

 

 def lemmatize(self, token, tag): 

  tag = { 

   'N': wn.NOUN, 

   'V': wn.VERB, 

   'R': wn.ADV, 

   'J': wn.ADJ 

  }.get(tag[0], wn.NOUN) 

  return self.lemmatizer.lemmatize(token, tag) 
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Sentiment Analysis: 

 
import ast 

import numpy as np 

import pandas as pd 

import re 

from nltk.corpus import stopwords 

from nltk.stem import SnowballStemmer 

from sklearn.model_selection import train_test_split 

from sklearn.feature_selection import SelectKBest, chi2, SelectPercentile, f_classif 

from sklearn.feature_extraction.text import TfidfVectorizer 

from sklearn.pipeline import Pipeline 

from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score, 

confusion_matrix 

from sklearn.svm import LinearSVC 

# from textblob import TextBlob 

from time import time 

 

def getInitialData(data_file): 

 print('Fetching initial data...') 

 t = time() 

 

 i = 0 

 df = {} 

 with open(data_file, 'r') as file_handler: 

  for review in file_handler.readlines(): 

   df[i] = ast.literal_eval(review) 

   i += 1 

 

 reviews_df = pd.DataFrame.from_dict(df, orient = 'index') 

 reviews_df.to_pickle('reviews_digital_music.pickle') 
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 print('Fetching data completed!') 

 print('Fetching time: ', round(time()-t, 3), 's\n') 

 

 

# def filterLanguage(text): 

#  text_blob = TextBlob(text) 

#  return text_blob.detect_language() 

 

def prepareData(reviews_df): 

 print('Preparing data...') 

 t = time() 

 

 reviews_df.rename(columns = {"overall" : "reviewRating"}, inplace=True) 

 reviews_df.drop(columns = ['reviewerID', 'asin', 'reviewerName', 'helpful', 'summary', 

'unixReviewTime', 'reviewTime'], inplace = True) 

 

 

 reviews_df = reviews_df[reviews_df.reviewRating != 3.0] # Ignoring 3-star reviews -> neutral 

 reviews_df = reviews_df.assign(sentiment = np.where(reviews_df['reviewRating'] >= 4.0, 1, 0)) # 1 

-> Positive, 0 -> Negative 

 

 stemmer = SnowballStemmer('english') 

 stop_words = stopwords.words('english') 

 

 # print(len(reviews_df.reviewText)) 

 # filterLanguage = lambda text: TextBlob(text).detect_language() 

 # reviews_df = reviews_df[reviews_df['reviewText'].apply(filterLanguage) == 'en'] 

 # print(len(reviews_df.reviewText)) 

 

 reviews_df = reviews_df.assign(cleaned = reviews_df['reviewText'].apply(lambda text: ' 

'.join([stemmer.stem(w) for w in re.sub('[^a-z]+|(quot)+', ' ', text.lower()).split() if w not in stop_words]))) 

 reviews_df.to_pickle('reviews_digital_music_preprocessed.pickle') 
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 print('Preparing data completed!') 

 print('Preparing time: ', round(time()-t, 3), 's\n') 

 

def preprocessData(reviews_df_preprocessed): 

 print('Preprocessing data...') 

 t = time() 

  

 X = reviews_df_preprocessed.iloc[:, -1].values 

 y = reviews_df_preprocessed.iloc[:, -2].values 

 

 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 42) 

 

 print('Preprocessing data completed!') 

 print('Preprocessing time: ', round(time()-t, 3), 's\n') 

 

 return X_train, X_test, y_train, y_test 

 

def evaluate(y_test, prediction): 

 print('Evaluating results...') 

 t = time() 

  

 print('Accuracy: {}'.format(accuracy_score(y_test, prediction))) 

 print('Precision: {}'.format(precision_score(y_test, prediction))) 

 print('Recall: {}'.format(recall_score(y_test, prediction))) 

 print('f1: {}'.format(f1_score(y_test, prediction))) 

 

 print('Results evaluated!') 

 print('Evaluation time: ', round(time()-t, 3), 's\n') 

 

# getInitialData('datasets/reviews_digital_music.json') 

# reviews_df = pd.read_pickle('reviews_digital_music.pickle') 
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# prepareData(reviews_df) 

reviews_df_preprocessed = pd.read_pickle('reviews_digital_music_preprocessed.pickle') 

# print(reviews_df_preprocessed.isnull().values.sum()) # Check for any null values 

 

X_train, X_test, y_train, y_test = preprocessData(reviews_df_preprocessed) 

 

print('Training data...') 

t = time() 

 

pipeline = Pipeline([ 

    ('vect', TfidfVectorizer(ngram_range = (1,2), stop_words = 'english', 

sublinear_tf = True)), 

    ('chi', SelectKBest(score_func = chi2, k = 50000)), 

    ('clf', LinearSVC(C = 1.0, penalty = 'l1', max_iter = 3000, dual = False, 

class_weight = 'balanced')) 

   ]) 

 

model = pipeline.fit(X_train, y_train) 

 

print('Training data completed!') 

print('Training time: ', round(time()-t, 3), 's\n') 

 

print('Predicting Test data...') 

t = time() 

 

prediction = model.predict(X_test) 

 

print('Prediction completed!') 

print('Prediction time: ', round(time()-t, 3), 's\n') 

 

evaluate(y_test, prediction) 

 

print('Confusion matrix: {}'.format(confusion_matrix(y_test, prediction))) 
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print() 

l = (y_test == 0).sum() + (y_test == 1).sum() 

s = y_test.sum() 

print('Total number of observations: ' + str(l)) 

print('Positives in observation: ' + str(s)) 

print('Negatives in observation: ' + str(l - s)) 

print('Majority class is: ' + str(s / l * 100) + '%') 

 

Graph Plotting Code: 

import numpy as np 

import matplotlib.pyplot as plt 

from matplotlib.ticker import MaxNLocator 

from collections import namedtuple 

n_groups = 5 

score_MNB = (85.25, 85.31, 85.56, 84.95, 85.31) 

score_LR = (88.12, 88.05, 87.54, 88.72, 88.05) 

score_LSVC=(88.12, 88.11, 87.59, 88.80, 88.11) 

score_RF=(82.43, 81.82, 79.74, 85.30, 81.83) 

 

#n1=(score_MNB[0], score_LR[0], score_LSVC[0], score_RF[0]) 

#n2=(score_MNB[1], score_LR[1], score_LSVC[1], score_RF[1]) 

#n3=(score_MNB[2], score_LR[2], score_LSVC[2], score_RF[2]) 

#n4=(score_MNB[3], score_LR[3], score_LSVC[3], score_RF[3]) 

#n5=(score_MNB[4], score_LR[4], score_LSVC[4], score_RF[4]) 

fig, ax = plt.subplots() 

index = np.arange(n_groups) 

bar_width = 0.1 

opacity = 0.7 

error_config = {'ecolor': '0.3'} 

rects1 = ax.bar(index,score_MNB, bar_width, 

                alpha=opacity, color='b', 
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                error_kw=error_config, 

                label='Multinomial Naive Bayes') 

z=index + bar_width 

rects2 = ax.bar(z, score_LR, bar_width, 

                alpha=opacity, color='r', 

                error_kw=error_config, 

                label='Logistic Regression') 

z=z+ bar_width 

rects3 = ax.bar(z, score_LSVC, bar_width, 

                alpha=opacity, color='y', 

                error_kw=error_config, 

                label='Linear SVM') 

z=z+ bar_width 

rects4 = ax.bar(z, score_RF, bar_width, 

                alpha=opacity, color='g', 

                error_kw=error_config, 

                label='Random Forest') 

ax.set_xlabel('Score Parameters') 

ax.set_ylabel('Scores (in %)') 

ax.set_title('Scores of Classifiers') 

ax.set_xticks(index + bar_width / 2) 

ax.set_xticklabels(('F1', 'Accuracy', 'Precision', 'Recall', 'ROC AUC')) 

ax.legend(bbox_to_anchor=(1, 1.02), loc=5, borderaxespad=0) 

fig.tight_layout() 

plt.show() 

 

 

 

 

 

 



 
38 

 

References 

 

 S. ChandraKala1 and C. Sindhu2, “OPINION MINING AND SENTIMENT 

CLASSIFICATION: A SURVEY,”.Vol .3(1),Oct 2012,420-427 

 G.Angulakshmi , Dr.R.ManickaChezian ,”An Analysis on Opinion Mining: Techniques and 

Tools”. Vol 3(7), 2014 www.iarcce.com.  

 Callen Rain,”Sentiment Analysis in Amazon Reviews Using Probabilistic Machine 

Learning” Swarthmore College, Department of Computer Science. 

 Padmani P .Tribhuvan,S.G. Bhirud,Amrapali P. Tribhuvan,” A Peer Review of Feature 

Based Opinion Mining and Summarization”(IJCSIT) International Journal of Computer 

Science and Information Technologies, Vol. 5 (1), 2014, 247-250 ,www.ijcsit.com. 

 Carenini, G., Ng, R. and Zwart, E. Extracting Knowledge from Evaluative Text. 

Proceedings of the Third International Conference on Knowledge Capture (K-CAP’05), 

2005. 

 Dave, D., Lawrence, A., and Pennock, D. Mining the Peanut Gallery: Opinion Extraction 

and Semantic Classification of Product Reviews. Proceedings of International World Wide 

Web Conference (WWW’03), 2003. 

 Zhu, Jingbo, et al. "Aspect-based opinion polling from customer reviews." IEEE 

Transactions on Affective Computing, Volume 2.1,pp.37-49, 2011.  

 Na, Jin-Cheon, Haiyang Sui, Christopher Khoo, Syin Chan, and Yunyun Zhou. 

"Effectiveness of simple linguistic processing in automatic sentiment classification of 

product reviews." Advances in Knowledge Organization Volume9, pp. 49-54, 2004.  

 Nasukawa, Tetsuya, and Jeonghee Yi. "Sentiment analysis: Capturing favorability using 

natural language processing." In Proceedings of the 2nd international conference on 

Knowledge capture, ACM, pp. 70-77, 2003.  

 Li, Shoushan, Zhongqing Wang, Sophia Yat Mei Lee, and Chu-Ren Huang. "Sentiment 

Classification with Polarity Shifting Detection." In Asian Language Processing (IALP), 

2013 International Conference on, pp. 129-132. IEEE, 2013.  

 

http://www.iarcce.com/

