
 Social Networks Analysis : Link Prediction

 By
 ALFAIZ ULLAH (11700114002)

 SUBHADHRITI MAIKAP (11700114077)

 ARITRA DAS (11700114011)

 PRINCE SINHA (11700114007)

 UNDER THE GUIDANCE OF

 Prof. SK. Mazharul Islam

PROJECT REPORT SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

BACHELOR OF TECHNOLOGY IN COMPUTER SCIENCE AND

ENGINEERING

RCC INSTITUTE OF INFORMATION TECHNOLOGY

Session 2017-2018

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

RCC INSTITUTE OF INFORMATION TECHNOLOGY

[Affiliated to West Bengal University of Technology]

CANAL SOUTH ROAD, BELIAGHATA, KOLKATA-700015

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

RCC INSTITUTE OF INFORMATION TECHNOLOGY

TO WHOM IT MAY CONCERN

I hereby recommend that the Project entitled Social Networks Analysis : Link

Prediction & Community Detection prepared under my supervision by ALFAIZ

ULLAH (Reg. No. –141170110002,Class Roll No. –CSE/2014/039),ARITRA

DAS(Reg. No. –141170110011,Class Roll No.CSE/2014/057),SUBHODHRITI

MAIKAP(Reg. No. –141170110077,Class Roll No. –CSE/2014/059),PRICE

SINHA(Reg. No. –141170110007,Class Roll No. –CSE/2014/033) of B.Tech 8th

Semester may be accepted in partial fulfillment for the degree of Bachelor of

Technology in Computer Science & Engineering under West Bengal University

of Technology (WBUT).

.

…………………………………………

Project Supervisor

Department of Computer Science and Engineering

RCC Institute of Information Technology

Countersigned:

………………………………………

Head

Department of Computer Sc. & Engg,

RCC Institute of Information Technology

Kolkata – 700015.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

RCC INSTITUTE OF INFORMATION TECHNOLOGY

CERTIFICATE OF APPROVAL

The foregoing Project is hereby accepted as a credible study of an engineering

subject carried out and presented in a manner satisfactory to warrant its acceptance as

a prerequisite to the degree for which it has been submitted. It is understood that by this

approval the undersigned do not necessarily endorse or approve any statement made,

opinion expressed or conclusion drawn therein, but approve the project only for the

purpose for which it is submitted.

FINAL EXAMINATION FOR 1. —————————————

EVALUATION OF PROJECT

2. ———————————

(Signature of Examiners)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

RCC INSTITUTE OF INFORMATION TECHNOLOGY

ACKNOWLEDGEMENT

We express our sincere gratitude to Prof. Sk. Mazharul Islam, Department of CSE, RCCIIT,

for extending his valuable time for us to take up this problem as our B.Tech thesis. It was

his supervision and guidance that made it possible for us to complete our research. It would

have been impossible for us to complete our thesis without his extraordinary support and

advice.

————————————

————————————

 ————————————

————————————

Table of Contents

Page No.

1. Introduction …………………………………………………….

2. Review of Literature ……………………………………………

3. Objective of the Project…………………………………………

4. System Design……………………………………………………

5. Methodology for implementation (Formulation/Algorithm) ……

6. Implementation Details………………………………………….

7. Results/Sample output………………………………………….

8. Conclusion……………………………………………………….

Appendix-: Program Source code with adequate comments.

References

Abstract

In a social network there can be many different kinds of links or edges between the

nodes. Those could for example be social contacts, hyper-references or phone-calls.

Link Prediction is the problem of predicting edges that either don't yet exist at the given

time t or exist, but have not been discovered, are likely to occur in the near future. We

develop approaches to link prediction based on measures for analyzing the proximity

of nodes in a network. Consider a co-authorship network among scientists, e.g. two

scientists who are close in the network will have col-leagues in common, so they are

more likely to collaborate in the near future. Our goal is to make this intuitive notion

precise and to understand which measures of proximity in a network lead to the most

accurate link predictions. Link prediction algorithms can be classified into three

categories: Node neighborhood approaches, Path based approaches and Meta

approaches. Node neighborhood approach is based on local features of a network,

focusing mainly on the nodes structure (i.e. based on the number of common friends

that two users share). The local-based measures are: Common Neighbors, Jaccard’s

coefficient, Adamic/Adar and Preferential Attachment. Path based algorithms considers

the ensemble of all paths between two nodes. The Path based algorithms are: Katz, Sim-

Rank, Hitting Time and Commute Time, Rooted PageRank, Prop Flow and High-

Performance Link Prediction. Meta-Approaches alter the data before being passed to

one of the path-based approaches. The algorithms are: Low-rank approximation,

Unseen bigrams and Clustering.

List of Figures

1.1 Social Network .. . 2

1.2 Community Detection in Social Networks 4

1.3 Link Prediction in Social Networks 5

3.1 Link Prediction Problem . 18

6.1 Confusion matrix .. 29

6.2 ROC curve of condmat data .. 30

6.3 PR curve of condmat data .. . 31

6.4 ROC curve of Disease-g data .. 32

6.5 PR curve of Disease-g data .. . 33

6.6 Link Prediction Analysis . 34

6.7 Similarity matrix .. 34

6.8 Bar Plot of Time takes by algorithms 35

viii

Chapter 1

Introduction

1

2

1.1 Introduction to Social Networks

A Social Structure consists of nodes(Individuals or Organizations) and nodes are

connected by different types of relationships. A set of social actors or nodes(such

as individuals or organizations) and a set of the dyadic ties between these nodes

constitute a social network. For example scientists in a discipline, employees in a

large company, business leaders can be thought as nodes in a network and co-

authors of a paper, working on a project, serve together on board can be thought

as edges respectively. The idea behind Social Networks is to create opportunities

to develop friendships, share information and promote business in a network. OSN

like Facebook and Twitter have become important part of daily life of millions of

people. The enormous growth and dynamics of these networks has led to several

researches that examine the network properties i.e. structural and behavioral

properties of large scale social networks.

Figure 1.1: Social Network

3

1.2 Social Network Analysis

Social network analysis(SNA) is in depth analysis of social networks. SNA is the

mapping and measuring of relationships, links and owes between nodes(people,

groups, organizations, computers) and many other connected entities which pro-

vides some knowledge and information. The vertices or nodes in the network are

the people and groups while the links show relationships or owes between the

nodes. We can do visual and a mathematical analysis of human relationships

through SNA that helps us to make sense out of the social network, to and the

complex structure of social networks, to understand the evolution of social net-

works, network dynamics and to discover complex communication patterns and

characteristic features of the network.

1.3 Tasks Of Social Network Analysis

Social networks are dynamic by nature. They change very quickly over a specific

interval. Continuously new relationships establish between nodes and many old

relationships break. These relational changes(when people become friends through

common friends), characteristics of the nodes, characteristics of pairs of actors or link

weights and random unexplained events in sequences the graph characteristics. The

key tasks of SNA include different measures to rank nodes(or edges), Link prediction

problem, Inferring social networks from social events, Viral marketing, Community

detection, Design of incentives in networks, Determining implicit social hierarchy,

Network formation, Spars cation of social networks(with purpose). There are many

measures to rank nodes like degree centrality, closeness central-ity, clustering coe

cient, betweenness centrality, Katz centrality and Eigen vector centrality. Link

prediction is predicting the links that does not exist or exist, but not known and have

probability to occur in the near future. Viral marketing deals with exploiting social

connectivity patterns of users to propagate the awareness of product. Community

detection involves graph partitioning based on activities over the social network and

determining the dense sub graphs in a social network. In designing the incentives, only

the person who answers the query is rewarded, with no reward for the intermediaries.

Since individuals are often rational and intelligent, they may not participate in

answering the queries unless

4

some kind of incentives are provided. SNA has many applications like informa-

tion sharing, Information sharing, Understand the spread of diseases, Marketing

in e-Commerce and e-Business, determine the in entail entities, build e active

social and political campaign, Predict future events, tracking terrorists and

location based crowdsourcing.

Figure 1.2: Community Detection in Social Networks

1.4 Link Prediction Problem

Different kind of links or edges between the nodes exist in a social network. For

example, social contacts, phone-calls or hyper-references. On analysis of social

networks, there can be many information about the linkage between the nodes that

are not discovered or unknown at a given point of time. Link Prediction is the

problem of predicting links that either dont yet exist at the given time t or exist, but

unknown up to this time. Given a picture of a social network(nodes and links) at

time t, we need to predict accurately the links that will be added to the network

during the interval from time t to a given future time t+1. In effect, the link prediction

problem concentrates on to what extent can the evolution of a social network be

modelled by using intrinsic features of the network itself? Let

5

us consider a co-authorship network among researchers, for example, there

are di erent reasons, outside to the network, why two researchers who have

never written a paper together will do so in the next few years. Or, when one of

the researchers changes institutions, they may come geographically very close.

Such interactions are be hard to predict. But by studying the network

characteristics, we can predict the possible links that are going to form. Our

objective is to make this intuitive notion very exact, and to understand which

measures of proximity in a graph lead to accurate predictions.

Figure 1.3: Link Prediction in Social Networks

The link prediction problem is also deals with the problem of getting missing

links from a known network, in a number of elds. It involves prediction of addi-

tional links that are not directly visible currently, are likely to exist in a network

based on observable data. It considers a static picture of the network, rather

than taking network evolution and network dynamics. It also considers speci c

prop-erties of the nodes in the network, rather than computing the power of

prediction methods that focuses on the graph structure.

1.5 Application of Link Prediction

Apart from its role as a basic question in social network formation, the link pre-

diction problem could be related to a number of interesting applications of so-cial

networks. It is found that a large and medium organisation like a company can bene

t from the involvement within the social network among its employees. These bene

ts to supplement the organisation hierarchy de ned by the organiza-tion. E ective

and e cient methods for link prediction could be used to analyse and study such a

social network, and suggest interactions that have not yet been

6

utilized within the organization, more likely to form. Link Prediction has a great

role in security research, largely inspired by the problem of controlling terrorist

networks and predicting their future involvement. In bioinformatics, e cient link

prediction techniques can be used to predict interactions between proteins. In

e-commerce it helps in building the recommendation systems so that helps in

viral marketing and e ective product awareness.

Chapter 2

Literature Review

7

8

Given a social network G(V; E) in which an edge represents some kind of

interactions between its vertices on nodes at a given time t. Suppose we have

a snapshot of a social network at a given time. We choose four times t0 < t00 <

t1 < t01, and give our algorithm to predict links that are likely to be formed in the

near future from the network G[t0; t00]. That results in predicting new links, not

present in G[t0; t00], that are expected to appear in the network G[t1; t01]. We

refer to [t0; t00] as the training interval and [t1; t01] as the test interval [1].

The most basic approach for similarity between any pair of nodes is by taking

the length of their shortest path in graph. We rank pairs of nodes in descending

order of score(x; y), where score(x; y) is the negative of the shortest path length

between x and y. We take a snapshot of a social network as training set and predict

the interactions among the nodes of training set that are likely to occur in near

future.The algorithms are classi ed as belows [2].

2.1 NODE NEIGHBORHOOD ALGORITHMS

Node neighborhood meaning the nodes directly connected to the two given nodes.

It is simple technique which traverse only paths of length 2. For any node A it check

the neighbors of neighbour of A and computes their similarity with A. It considers

only local features of a network, focusing mainly on the nodes structure(i.e. based

on the number of common friends that two users share).

2.1.1 Common Neighbors

The Common Neighbors method provide a measure for similarity by

calculating the intersection of the sets of neighbors of the nodes to predict

future linkage. The Common Neighbors(CN) is de ned as follows

CN(x; y) := (x) (y)

This measurement is based on the idea that two nodes a and b have an

increased probability to connect if they have a shared neighbor c. With a

growing number of shared neighbors this probability grows even higher.

9

The weighted Common Neighbors(CN w) is de ned as follows where w(x;

y) is the number of interactions between the nodes x and y.

X

w x; z) + w(y; z)

CN w(x; y) :=
(

 2

z (x)\ (y)

2.1.2 Jaccard coe cient

Jaccards coe cient measures number of the features(neighbors) that are

shared between two nodes commensurate to all features that either one of the

nodes has. Jaccards coe cient is a normalized variation of Common

Neighbors [?]R7). The Jacard coe cient is de ned as follows

J(x; y) := (x) \ (y)

(x) [(y)

This is the Common Neighbors measurement normalized by the union of

the node neighborhoods.

2.1.3 Adamic/Adar

It is a measurement that compares how many attributes two nodes have in com-

mon. They rate items that are unique to a few users more heavily than items

shared amongst a huge group of users. This measurement can easily be adjusted

in the context of node neighborhood by looking at shared neighbors as an at-

tribute. Therefore the sum over the shared neighbors inverse of the logarithms of

their neighborhoods is proposed [3].

The Adamic/Adar is de ned as follows

X 1
AA(x; y) :=

logj (z)j
z (x)\ (y)

The weighted Adamic/Adar (AAw) is de ned as follows where w(x; y) is the

number of interactions between the nodes x and y [4].

10

 X w(x; z) + w(y; z) 1

 P

AAw(x; y) :=
z (x)\ (y)

2
:
log z0 " (z) w(z0; z)

2.1.4 Preferential Attachment

Preferential Attachment is based on the hypothesis that a node x will get new

neighbors faster than a node y given y has less neighbors than x. So the

probability that a node will form a new link varies with number of its present

neighbors. The likelihood of two nodes being connected by an edge based on

preferential attachment is measured by multiplying the number of their

neighbors [5]. The Preferential Attachment is de ned as follows

P A(x; y) := (x): (y)

The weighted Preferential Attachment (P Aw) is de ned as follows where

w(x; y) is the number of interactions between the nodes x and y:

X

P Aw(x; y) := w(x; x
0
): y0 " (y)w(y

0
; y)

x; (x)

2.2 PATH BASED ALGORITHMS

Some measurements of link prediction take all paths between two nodes in consid-

eration. The computation of graphs that take the entire graph in consideration is by

nature much more complex than node neighborhood algorithms.

2.2.1 Katz

A measurement that takes all paths between two nodes in consideration while

rating short paths more heavily. The measurement exponentially reduce the

con-tribution of a path to the measure in order to give less weightage longer

paths. Therefore it uses a factor of l where l is the path length.

11

The Katz is de ned as follows

1
X

K(x; y) := l
:jpaths

<l>
x;yj

l=1

where paths<l>
x;y the set of all paths from source x to destination y that have

the path length l.

Unweighted : paths<l>
x;y = 1, if x and y have collaborated and 0 otherwise

Weighted : paths
<l>

x;y is the number of times that x and y have collaborated

The can be used to control how much the length of the paths should be

considered. A very small concludes to an algorithm where paths of length three

or more are taken much less into account and therefor the algorithm converges

node neighborhood algorithms. It has roughly cubic complexity as it requires

matrix inversion [6].

2.2.2 SimRank

If two nodes are referenced by more similar objects, then the two nodes have

large similarity value. Every object obviously has a similarity score of 1 to itself.

Node x and node y are then similar to the degree they are joined to similar

neighbors [7].

The SimRank is de ned as follows

S(x; x) := 1
P P

a (x) b (y)
S(x; y)

S(x; y) := :
(x): (y)

is a constant with [0; 1]. The constant can be thought of as a con dence

level. If you consider a situation in which a and b are both neighbors to c, than

obviously the similarity of c to itself is 1, but we do not want to conclude that

s(a; b) = s(c; c) = 1. Instead we let s(a; b) = s(x; x) because we are not as con

dent about the similarity of a and b as we are about s(x; x) = 1.

12

2.2.3 Hitting Time and Commute Time

Starting from a node x a random walk on a given graph moves iteratively over

the graph while choosing the next node each step at random. The expected

number of steps to get from x to y via a random walk is de ned as the Hitting

Time H(x; y). A short hitting time implies node similarity and therefor a

heightened chance of future linking. The commute time C(x; y) is a variant of

Hitting time which is useful for undirected graphs, because the hitting time is

not symmetric. Therefore it is de ned as follows:

C(x; y) := H(x; y) + H(y; x)

The commute time can have high variance, hence, prediction by this feature

can be poor. If z is a node with high stationary probability far o x and y, then a

random walker would probably reach the neighborhood of z. To avoid that we

can use reset the random walker to x with a xed probability of .

two normalized versions Hitting Time normalized (Hn) and Commute-Time

normalized (Cn) are de ned where x is the stationary probability of x to safeguard

it against vertices with a very high :

Hn(x; y) := H(x; y): y

Cn(x; y) := (H(x; y): y + H(y; x): x)

2.2.4 Rooted PageRank

Rooted PageRang is a modi cation of the Page Rank measure (which is an at-

tribute of a single vertex) for link prediction. It is the amount of step from x to y

with a probability of to return to x each step (and 1 to go to a random neighbor).

This metric is asymmetric and can be made symmetric by summing with the

counterpart where the role of x and y are reversed [8].

The rooted pagerank(RPR) between all node pairs is calculated as follows: Let

D be a diagonal degree matrix de ned as:

13

X
D[i; i] := A[i; j]

j

And let N be the following matrix with normalized row sums.

N := D 1

Then the Rooted Pagerank can be calculated as

RP R := (1)(I N) 1

2.2.5 PropFlow and High-Performance Link Prediction

The unsupervised PropFlow method calculates the probability that a random

walker reaches node y from node x in l steps or fewer while using link weights

as transition probabilities. If the algorithms revisits any node including x or if it

reaches y the algorithm terminates. When compared to Rooted PageRank the

algorithm is more localized and is insensitive to topologic noise far from the

source node. It is faster to compute because it does not require random resets.

High-Performance Link Prediction as a framework for link prediction. They

distinguish between two variants:

HPLP: Does not use the existing unsupervised methods, but only simple

Measures like In- and Out-Degree, Max. Flow, Shortest Paths or PropFlow

HPLP+: Uses the full feature set adding Adamic/Adar, Jaccards coe

cient, Katz and Preferential Attachment [2].

2.2.6 Supervised Random Walks

Node and link attributes along with node structure information are used for pre-

diction. Supervised learning strength is assigned to the edges that are likely to

have new links in the future so that random walker can visit them more likely.

The Strength is not set manually, but learned from the features of each edge

and nodes between them.

14

2.3 META APPROACHES

Meta-Approaches alter the data before being passed to one of the algorithms

mentioned above.

2.3.1 Low-rank approximation

For a lot of the mentioned algorithms there is a equivalent formulation for an

adjacency matrix M. For a large Matrix M the Matrix Mk is the rank-k matrix,

what can be done e ciently by singular value decomposition [9].

Katz measure using Mk rather than 4MCommonN eighborsscoringbyinnerproductsof

rows rather than M

The contains most related nodes to x under score(x; :) are de ned as Sx
< >. So

after calculating the score(x; y), we need to calculate the Sx
< >.

U B(x; y) := jz : z (y) \ Sx
< >j

X
U Bw(x; y) := score(x; z)

z (y)\Sx
< >

2.3.2 Clustering

This includes improving the quality of the algorithms by a clustering procedure

and after that the algorithm is applied to the modi ed sub graph. To achieve that

the measure is computing score(x; y) for all edge in the original graph and only

keeping the p fraction of these edges, where the score is highest [10]. After that

the score algorithm is applied to the modi ed graph. Using this technique, the

measurement is only applied to those nodes, in which the scoring algorithm has

the most con dence in. This can be seen as a cleaning up by removing of

tenuous edges [11].

15

2.4 Bayesian Probabilistic Model

There are two types of probabilistic approaches to predict links.

The rst approach extends a framework of probabilistic relational models cap-

turing probabilistic interactions between attributes of related entities by modelling

interactions between the attributes and the link structure itself [12]. For a proba-

bility distribution over a database a template describing the relational schema for

the domain and the probabilistic dependencies between attributes of the domain in

form of a PRM(probabilistic relational model) is speci ed. Probability distribu-tion

on the properties of the nodes and the links can be de ned. By including the links

into the probabilistic model they can be used to predict other links and to help make

predictions about other attributes in the model. If we look at existence uncertainty

no assumptions are made about the number of links that exist they are part of the

probabilistic model, but can still be used to make inferences about other attributes

in the model [13].

The second approach is based on the topological features of network

structures only. A probabilistic evolution model of network structure modelling

probabilistic ips of existence of edges depending on a copy-and-paste

mechanism of edges is presented. Based on this model a transductive learning

algorithm for link pre-diction based on an assumption of the stationarity of the

network is proposed. The algorithm realizes a maximum likelihood estimation

procedure using expo-nentiated gradient ascent. This is based on the idea that

if a node a has a strong in uence on a node b and there is an edge between a

and another node c. The authors assume a high probability that a link will

establish between b and c and that there is a very low probability that there will

never be a node between them [14].

2.5 LINEAR ALGEBRAIC METHOD

It is a general method to solve the link prediction problem which works directly on

the graph adjacency matrix or Laplacian matrix. The problem is reduced to a one-

dimensional regression problem [9][15, 16]. They training set is reduced to its

biggest connected component. The resulting set was then split into two adjacency

matrices A and B, where A was the source matrix and B containing one third of

16

all edges the target matrix. Di erent curve tting methods can be used to

predict the edge sets in the test set [17].

Chapter 3

Objective of the Project

17

18

The node neighbourhood algorithms of link prediction are based on node prox-

imity of a network. Common neighbours, Adamic/Adar index, Jaccard Coe cient,

etc. give the friend suggestion by exploiting path length of 2 between the source

and his potential friends. As it only considers of path lengths of 2, so it cant give e

cient prediction because it only focuses on immediate neighbours of the node. But

many other aspects are also needed to predict e ciently. Assuming a node can be

connected to others by di erent paths and of di erent path lengths, so two nodes

which are connected with many unique ways, are more likely to be connected and

that varies with the path lengths of di erent ways in which they are connected. Our

Proposed algorithm is more e cient than the algorithms which considers all the

paths of the network. Because considerideration of all the paths require more time

and space complexity. Sometimes it is necessary to get good result with in less

interval of time.

Our proposed algorithm performs better than global approaches as it is based

on user input bounded path traversal. It predicts the links by traversing to a

certain path length given by the user. In global approaches, the time and space

complexity are high due to consideration of all paths in the network. As our

algorithm only traverse up to certain path length, so its complexity is low with

comparison to global approaches. It also outperforms the node neighbourhood

algorithms as it traverses more path lengths than the node neighbourhood algo-

rithms. It considers the network characteristics around the target node to predict

its future links.

Figure 3.1: Link PredictionProblem

When we considers only path lengths of 2, then U4 and U7 have the equal

probability of forming links with U1 as they are connected with two di erent way of

path length 2. But when we consider the path length of 3, then U4 has more

19

probability to form a link than U7. Because U4 is connect with three di erent

paths with U1. If we have followed node neighbourhood techniques, then we

will get equal probability of U4 and U7 getting connected with U1. But through

our algorithm with max traversal length of 3, we can conclude that U4 has more

chance to get connected with U1 than U7.

So our algorithm performs better than node neighborhood algorithms in terms

of efficiency of result. It also performs better than global approaches in terms of

time and space complexity.

Chapter 5

Methodology for implementation

20

21

The link prediction algorithms based on user input as maximum path to be

traversed predicts the probability of formation of link between any two nodes of

the network by traversing all the paths of the network up to that certain input

path length. It rest traverses the path lengths of 2 i.e. the immediate

neighborhoods of the node. we can say it runs a neighborhood algorithm on

path length 2. It then produces a similarity list between every two nodes. When

it traverses the graph for path length 3, it uses new paths that are made by path

length 2 to get the new path lengths of 3 and computes their similarity matrix

and updates the similarity matrix in a cumulative way. This process continues

till the graph is traversed up to the maximum path length to be traversed given

by user. Let we get a path from A to B while traversing for the path length of n

1 with some similarity value, when we traverse the graph for path length value

n, then we will check all the neighbors of B(i.e. C) to get path from A to C. We

compute the similarity of each pair (A; C) and update the path list if their no

direct link between A and C in the original graph.

The inputs to the algorithm are the graph in terms of a list or adjacency array,

the total number of nodes the graph, maximum length to be traversed, which

determines how many time the algorithm will run and the path length for each

speci c traversal. The output of the algorithm is a similarity list containing the

similarity value between every two nodes by traversing the path lengths of given

maximum user input value. By observing the similarity matrix we can predict the

future links. The high similar values have more probability to form links in near

future and we can classify the values based on certain threshold value. The

similarity values more than the threshold value are likely to form future links.

This prediction can be compared with the test data to get the e ciency of the

algorithm.

5.1 The Proposed Algorithm

For each path length, we have to follow many steps:

Calculate that path list with respect to the list with previous input path

value

Update the current adjacency list for the entries having non-zero path value

22

Calculate the similarity measure with respect to the corresponding path

list Update the similarity list by adding the new similarity measures to the

list Increment the path length

This iteration stops when current path length exceeds the maximum value of

path length to be traversed.

5.1.1 Algorithm Parameters

5.1.1.1 Input Parameters

A : adjacency matrix of undirected and unweighted graph

n : total number of nodes of the graph

l : max length of path to be explored in G

m : the length of a path for current iteration

5.1.1.2 Output Parameters

sim(i; j) : Similarity measure between nodes i and j

5.1.2 Algorithm

Algorithm 1: MAIN FUNCTION
for m 2 to n do

cpath(A,n,prev,or) sim simi(sim,path,n,m);

path 0 ;

end

The main Program iteratively calls for checking the new collaboration between

any two nodes for a speci c path length through cpath function and computes the

23

similarity between the new collaborations with exactly m path length and

updates the similarity measures through sim function.

for i 1 to N do

 for j 1 to N do

if i < j then

if or (i,j) 6= j then

 for k 1 to N do

if prev (i,k) 6= 0 then

 if A (i,k) 6= 0 and or (k,j) 6= 0 then

 path (i,j) path (i,j)+prev (i,k) * or (k,j) ;

 end

 end

 end

 path (j,i) path (i,j) ;

 end

 end

 end

end

prev path;

for i 1 to N do

for j 1 to N do

if path (i,j) 6= 0 then

 A (j,i) 1 ;

 end

 end

end

return path and A;

The cpath function rst checks whether there is path from any two nodes of m

path length. It checks it by merging the new paths generated while traversing the

previous path length (m 1) and their neighbors in the original graph. So path

24

matrix contains new collaborations of path length exactly m.

Algorithm 2: FUNCTION SIMI
for i 1 to n do

 for j 1 to n do

lower 1;

 for k 1 to m do

lower lower * (n-k) ;

 end

 sim (i,j) (1/(m-1)* sim (i,j)) / lower;

 end

end

return sim;

The simi function nds the similarity measure for every pair of nodes which

have path length exactly m. It then cumulates the similarity values till the path

length of l for every two nodes. The pair of nodes having higher value of

similarity are more likely to form link in the near future.

Chapter 6

Implementation Details

25

26

A social network contains nodes and edges represent collaboration

between nodes. Suppose we have a snapshot of a social network at a given

time. We record multiple interactions between every pair of nodes in di erent

time-stamps. We choose four times t0 < t00 < t1 < t01, and give our algorithm to

predict links that are likely to be formed in the near future from the network G[t0;

t00]. That results in predicting new links, not present in G[t0; t00], that are

expected to appear in the network G[t1; t01]. We refer to[t0; t00] as the training

interval and [t1; t01] as the test interval.

As social networks grow very rapidly and exponentially, So there may be

may nodes that may not be present in our snapshot of network on which we are

pre-dicting. So we will consider only the nodes that are present in our network

and their collaborations will be studied. Thus, in evaluating link prediction

methods, we will generally use two parameters training set G[t0; t00] and test

set G[t1; t01]. We will then evaluate how accurately the new edges between

elements of training set can be predicted.

6.1 Data Sources

6.1.1 Condmat

The rst data source is a stream of 19,464 multi-agent events representing con-

densed matter physics collaborations from 1995 to 2000. We construct weighted,

undirected networks from the collaborations by creating a node for each author in

the event and a weighted, undirected link connecting each pair of authors. Weights

correspond to the number of collaborations two authors share. We use the years

1995 to 1999 (13.9K nodes, 80.6K links) for extracting features as training set and

the year 2000 (8.5K nodes,41.0K links) for obtaining ground truth.

6.1.2 Disease-g

The disease-gene(disease-g) network was constructed from three individual data sets.

As the name suggests, this network has two distinct node types, diseases and genes,

with four edge types connecting them. It also contains genetic associations, protein -

protein interactions, phenotypic links and family links as edges. Here we

27

have taken a small part of it. The nodes are the diseases and the weights

represent the genetic similarity between cancer diseases.

6.2 Network Characteristics

 Condmat Disease-g

Nodes 17636 1835

Edges 23709 7817

Assortativity Coe cient 0.177 0.31

Avg. Clustering Coe cient 0.642 0.665

Number of SSCs 652 1

Largest SSC 15,081 399

Largest SSC diameter 19 4

6.3 Codes

import numpy as np

import os

import glob

import random

from random import shuffle

from random import seed

import matplotlib.pyplot as plt

import time

import datetime

import collections

import csv

k = 3 # Top k recomendations for a target user

maxl = 2 # Number of iterations for Katz Algorithm

beta = 0.1 # The damping factor for Katz Algorithm

################################

######## Helper Functions #########

################################

load edge-list from file

def get_edge_list(dataset_path):

 data_file = open(dataset_path)

 edge_list = map(lambda x:tuple(map(int,x.split())),data_file.read().split("\n")[:-1])

 data_file.close()

 return edge_list

Get the similarity product for a path

(product of path-step similarities)

def get_sim_product(sim, shortest_path):

 prod = 1

 for i in range(len(shortest_path) - 1):

 prod *= sim[shortest_path[i]][shortest_path[i+2]]

 return round(prod,3)

Filter out, Sort and Get top-K predictions

def get_top_k_recommendations(graph,sim,i,k):

 return sorted(filter(lambda x: i!=x and graph[i,x] != 1,range(len(sim[i]))) ,

key=lambda x: sim[i][x],reverse=True)[0:k]

Convert edge_list into a set of constituent edges

def get_vertices_set(edge_list):

 res = set()

 for x,y in edge_list:

 res.add(x)

 res.add(y)

 return res

Split the dataset into two parts (50-50 split)

Create 2 graphs, 1 used for training and the other for testing

def split_data(edge_list):

 random.seed(350)

 indexes = range(len(edge_list))

 test_indexes = set(random.sample(indexes, len(indexes)/2)) # removing 50% edges

from test data

 train_indexes = set(indexes).difference(test_indexes)

 test_list = [edge_list[i] for i in test_indexes]

 train_list = [edge_list[i] for i in train_indexes]

 csv_file = open('test.csv',"w")

 fields = ['Node1','Node2']

 thewriter = csv.DictWriter(csv_file,fieldnames=fields)

 for i in range(len(test_list)):

 thewriter.writerow({'Node1' : str(edge_list[i][0]) , 'Node2' :

str(edge_list[i][1])})

 return train_list,test_list

Calculates accuracy metrics (Precision & Recall),

for a given similarity-model against a test-graph.

def

print_precision_and_recall(sim,train_graph,test_graph,test_vertices_set,train_vertices_set,es

im):

 precision = recall = c = 0

 for i in test_vertices_set:

 if i in train_vertices_set:

 actual_friends_of_i = set(test_graph.neighbors(i))

 # Handles case where test-data < k

 if len(actual_friends_of_i) < k:

 k2 = len(actual_friends_of_i)

 else:

 k2 = k

 top_k = set(get_top_k_recommendations(train_graph,esim,i,k2))

 precision += len(top_k.intersection(actual_friends_of_i))/float(k2)

 recall +=

len(top_k.intersection(actual_friends_of_i))/float(len(actual_friends_of_i))

 c += 1

 #print(esim)

 print "Precision is : " + str(precision/c)

 print "Recall is : " + str(recall/c)

def get_recomemendations(edge_list,esim,name):

 graph = Graph(edge_list)

 edge_vertices_set = get_vertices_set(edge_list)

 #output to a file name output.txt

 if name == "train":

 csv_file = open('train_recommendations.csv',"w")

 fields = ['Node','R1','R2','R3']

 thewriter = csv.DictWriter(csv_file,fieldnames=fields)

 csv_file2 = open('train_edgelist.csv',"w")

 fields2 = ['Node1','Node2','Weight']

 thewriter2 = csv.DictWriter(csv_file2,fieldnames=fields2)

 if name == "total":

 csv_file = open('total_recommendations.csv',"w")

 fields = ['Node','R1','R2','R3']

 thewriter = csv.DictWriter(csv_file,fieldnames=fields)

 csv_file2 = open('total_edgelist.csv',"w")

 fields2 = ['Node1','Node2','Weight']

 thewriter2 = csv.DictWriter(csv_file2,fieldnames=fields2)

 for i in edge_vertices_set:

 if i in edge_vertices_set:

 actual_friends_of_i = set(graph.neighbors(i))

 # Handles case where test-data < k

 if len(actual_friends_of_i) < k:

 k2 = len(actual_friends_of_i)

 else:

 k2 = k

 top_k = get_top_k_recommendations(graph,esim,i,k2)

 if len(top_k) == 3:

 thewriter.writerow({'Node' : str(i) , 'R1' : top_k[0] , 'R2' :

top_k[1] ,'R3' : top_k[2]}) #write to csv file

 elif len(top_k) == 2:

 thewriter.writerow({'Node' : str(i) , 'R1' : top_k[0] , 'R2' :

top_k[1]}) #write to csv file

 elif len(top_k) == 1:

 thewriter.writerow({'Node' : str(i) , 'R1' : top_k[0]}) #write to

csv file

 i=0

 for i in range(len(edge_list)):

 thewriter2.writerow({'Node1' : str(edge_list[i][0]) , 'Node2' :

str(edge_list[i][1]) ,'Weight' : str(esim[edge_list[i][0]][edge_list[i][1]])})

http://be.amazd.com/link-prediction/

def similarity(graph, i, j, method):

 if method == "common_neighbors":

 return len(set(graph.neighbors(i)).intersection(set(graph.neighbors(j))))

 elif method == "jaccard":

 return

len(set(graph.neighbors(i)).intersection(set(graph.neighbors(j))))/float(len(set(graph.neighbo

rs(i)).union(set(graph.neighbors(j)))))

 elif method == "adamic_adar":

 return sum([1.0/math.log(graph.degree(v)) for v in

set(graph.neighbors(i)).intersection(set(graph.neighbors(j)))])

 elif method == "preferential_attachment":

 return graph.degree(i) * graph.degree(j)

 elif method == "friendtns":

 return round((1.0/(graph.degree(i) + graph.degree(j) - 1.0)),3)

###################################

Methods for Link Prediction ###

###################################

def local_methods(edge_list,method):

 graph = Graph(edge_list)

 edge_n = graph.vcount()

 edge_vertices_set = get_vertices_set(edge_list)

 train_list, test_list = split_data(edge_list)

 train_graph = Graph(train_list)

 test_graph = Graph(test_list)

 train_n = train_graph.vcount() # This is maximum of the vertex id + 1

 train_vertices_set = get_vertices_set(train_list) # Need this because we have to only

consider target users who are present in this train_vertices_set

 test_vertices_set = get_vertices_set(test_list) # Set of target users

 sim = [[0 for i in range(train_n)] for j in range(train_n)]

 for i in range(train_n):

 for j in range(train_n):

 if i!=j and i in train_vertices_set and j in train_vertices_set:

 sim[i][j] = similarity(train_graph,i,j,method)

 sp1 = {}

 for i in train_vertices_set:

 sp1[i] = train_graph.get_shortest_paths(i)

 # Extended Sim matrix for train_list

 esim1 = [[0 for i in range(train_n)] for j in range(train_n)]

 for i in range(train_n):

 for j in range(train_n):

 if i!=j and i in train_vertices_set and j in train_vertices_set:

 if len(sp1[i][j]) == 0: # no path exists

 esim1[i][j] = 0

 elif train_graph[i,j] == 1 and train_graph[j,i] == 1: # are

neighbors

 esim1[i][j] = sim[i][j]

 else:

 esim1[i][j] = get_sim_product(sim,sp1[i][j])

 elif i == j and i in train_vertices_set and j in train_vertices_set:

 esim1[i][j] = 1

 get_recomemendations(train_list,esim1,'train')

 sim1 = [[0 for i in range(edge_n)] for j in range(edge_n)]

 for i in range(edge_n):

 for j in range(edge_n):

 if i!=j and i in edge_vertices_set and j in edge_vertices_set:

 sim1[i][j] = similarity(graph,i,j,method)

 elif i == j and i in edge_vertices_set and j in edge_vertices_set:

 sim1[i][j] = 1

 sp = {}

 for i in edge_vertices_set:

 sp[i] = graph.get_shortest_paths(i)

 # Extended Sim matrix for total_graph

 esim = [[0 for i in range(edge_n)] for j in range(edge_n)]

 for i in range(edge_n):

 for j in range(edge_n):

 if i!=j and i in edge_vertices_set and j in edge_vertices_set:

 if len(sp[i][j]) == 0: # no path exists

 esim[i][j] = 0

 elif graph[i,j] == 1 and graph[j,i] == 1: # are neighbors

 esim[i][j] = sim1[i][j]

 else:

 esim[i][j] = get_sim_product(sim1,sp[i][j])

 elif i == j and i in edge_vertices_set and j in edge_vertices_set:

 esim[i][j] = 1

 get_recomemendations(edge_list,esim,'total')

 print_precision_and_recall(sim,train_graph,test_graph,test_vertices_set,train_vertices

_set,esim1)

Calculates the Katz Similarity measure for a node pair (i,j)

def katz_similarity(katzDict,i,j):

 l = 1

 neighbors = katzDict[i]

 score = 0

 while l <= maxl:

 numberOfPaths = neighbors.count(j)

 if numberOfPaths > 0:

 score += (beta**l)*numberOfPaths

 neighborsForNextLoop = []

 for k in neighbors:

 neighborsForNextLoop += katzDict[k]

 neighbors = neighborsForNextLoop

 l += 1

 return score

Implementation of the Katz algorithm

def katz(edge_list,method):

 train_list, test_list = split_data(edge_list)

 train_graph = Graph(train_list)

 test_graph = Graph(test_list)

 train_n = train_graph.vcount()

 train_vertices_set = get_vertices_set(train_list) # Need this because we have to only

consider target users who are present in this train_vertices_set

 test_vertices_set = get_vertices_set(test_list) # Set of target users

 # build a special dict that is like an adjacency list

 katzDict = {}

 adjList = train_graph.get_adjlist()

 for i, l in enumerate(adjList):

 katzDict[i] = l

 sim = [[0 for i in xrange(train_n)] for j in xrange(train_n)]

 for i in xrange(train_n):

 if i not in train_vertices_set:

 continue

 for j in xrange(i+1, train_n):

 if j in train_vertices_set: # TODO: check if we need this

 sim[i][j] = sim[j][i] = katz_similarity(katzDict,i,j)

 print_precision_and_recall(sim,train_graph,test_graph,test_vertices_set,train_vertices

_set,sim)

Implementation of the friendTNS algorithm

def friendtns(edge_list, method):

 graph = Graph(edge_list)

 edge_n = graph.vcount()

 edge_vertices_set = get_vertices_set(edge_list)

 train_list, test_list = split_data(edge_list)

 train_graph = Graph(train_list)

 test_graph = Graph(test_list)

 train_n = train_graph.vcount() # This is maximum of the vertex id + 1

 train_vertices_set = get_vertices_set(train_list) # Need this because we have to only

consider target users who are present in this train_vertices_set

 test_vertices_set = get_vertices_set(test_list) # Set of target users

 sim = [[0 for i in range(train_n)] for j in range(train_n)]

 for i in range(train_n):

 for j in range(train_n):

 if i!=j and i in train_vertices_set and j in train_vertices_set and

train_graph[i,j] != 0:

 sim[i][j] = similarity(train_graph,i,j,method)

 # Calculate Shortest Paths from each vertex to every other vertex in the

train_vertices_set

 sp = {}

 for i in train_vertices_set:

 sp[i] = train_graph.get_shortest_paths(i)

 # Extended Sim matrix

 esim = [[0 for i in range(train_n)] for j in range(train_n)]

 for i in range(train_n):

 for j in range(train_n):

 if i!=j and i in train_vertices_set and j in train_vertices_set:

 if len(sp[i][j]) == 0: # no path exists

 esim[i][j] = 0

 elif train_graph[i,j] == 1 and train_graph[j,i] == 1: # are

neighbors

 esim[i][j] = sim[i][j]

 else:

 esim[i][j] = get_sim_product(sim,sp[i][j])

 get_recomemendations(train_list,esim,'train')

 sim1 = [[0 for i in range(edge_n)] for j in range(edge_n)]

 for i in range(edge_n):

 for j in range(edge_n):

 if i!=j and i in edge_vertices_set and j in edge_vertices_set:

 sim1[i][j] = similarity(graph,i,j,method)

 elif i == j and i in edge_vertices_set and j in edge_vertices_set:

 sim1[i][j] = 1

 sp1 = {}

 for i in edge_vertices_set:

 sp1[i] = graph.get_shortest_paths(i)

 # Extended Sim matrix

 esim1 = [[0 for i in range(edge_n)] for j in range(edge_n)]

 for i in range(edge_n):

 for j in range(edge_n):

 if i!=j and i in edge_vertices_set and j in edge_vertices_set:

 if len(sp1[i][j]) == 0: # no path exists

 esim1[i][j] = 0

 elif graph[i,j] == 1 and graph[j,i] == 1: # are neighbors

 esim1[i][j] = sim1[i][j]

 else:

 esim1[i][j] = get_sim_product(sim1,sp1[i][j])

 elif i == j and i in edge_vertices_set and j in edge_vertices_set:

 esim1[i][j] = 1

 get_recomemendations(edge_list,esim1,'total')

 print_precision_and_recall(sim,train_graph,test_graph,test_vertices_set,train_vertices

_set,esim)

###################################

############# Main ################

###################################

def main():

 # default-case/ help

 if len(sys.argv) < 3 :

 print "python link_prediction.py

<common_neighbors/jaccard/adamic_adar/preferential_attachment/katz/friendtns>

data_file_path"

 exit(1)

 # Command line argument parsing

 method = sys.argv[1].strip()

 dataset_path = sys.argv[2].strip()

 edge_list = get_edge_list(dataset_path)

 if method == "common_neighbors" or method == "jaccard" or method ==

"adamic_adar" or method == "preferential_attachment":

 local_methods(edge_list,method)

 elif method == "katz":

 katz(edge_list,method)

 elif method == "friendtns":

 friendtns(edge_list,method)

 else:

 print "python link_prediction.py

<common_neighbors/jaccard/adamic_adar/preferential_attachment/katz/friendtns>

data_file_path"

if __name__ == "__main__":

 main()

Chapter 7

Results and Analysis

28
29

7.1 The Evaluation Measures

Let us de ne P as positive result and N as negative result. The possible

outcomes can be formulated in a matrix.

Figure 6.1: Confusion matrx

7.1.1 Receiver Operating Characteristic(ROC)

ROC is the variation of true positive rate(TPR) with respect to false positive rate

(FPR) at various threshold settings. So it is de ned by FPR and TPR as x and

y-axis respectively.

TPR = fraction of true positives out of total positives i.e. T P=P = T P=(T P +F N)

FPR = fraction of false positives out of total negatives i.e. F P=N = F P=(F P +

T N)

7.1.2 Precision-Recall Curve

ROC is the variation of Precision with respect to Recall at various threshold

settings. So, it is designed by Recall and Precision as x and y-axis

respectively. Precision = Positive predictive value i.e. T P=(T P + F P)

Recall = fraction of true positives out of total positives i.e. T P=P = T P=(T P +

F N)

30

7.2 Comparison between various link Prediction

algorithms

There are mainly two types of link prediction algorithms-node neighborhood tech-

niques and global approaches. We have applied different algorithms to Condmat

data set.

7.2.1 ROC curve for Condmat data set

Figure 6.2: ROC curve of condmat data

Here we nd that Adamic/Adar outperforms the other algorithms.
31

7.2.2 Precision Recall Curve for Condmat data set

Figure 6.3: PR curve of condmat data

Here also we observe that Adamic/Adar outperforms the other algorithms.

32

7.2.3 ROC curve for Disease-g data set

Figure 6.4: ROC curve of Disease-g data

Here we nd that the result remains the same. Adamic/Adar performs well

with comparison to the other algorithms.

33

7.2.4 Precision Recall Curve for Disease-g data set

Figure 6.5: PR curve of Disease-g data

Adamic/Adar is the best and most stable graph proximity measurement of

the unweighted node neighbourhood based algorithms in almost all

categorieswhen it doesnt score highest, the di erence is not much.

34

7.3 Our Proposed Method Implementation

We are implementing our proposed method on a small network. The input to

the algorithms is the network below and the output is a similarity matrix. It has

been discussed that with path length of 3, U4 has more probability to form link

with U1 with comparison to U7.

Figure 6.6: Link Prediction Analysis

The algorithm is implemented using maximum length to be traversed as 4. This

result shows that the similarity value of the node pair U1 and U4 is maximum

Figure 6.7: Similarity matrx

and more than that of the pair U1 and U7. So, there is more probability of formation of

link between U1 and U4. Hence our proposed method works correctly.

7.4 Complexity Analysis

Global approaches traverses all paths of the network to predict the links. They

require matrix inversion. So the time complexity for global techniques is O(n3).

35

The node neighborhood approaches traverses path length of 2 in a network. That

means, for any node it rst traverses all its neighbors and then their neighbors and

computes the similarity of the source node with its neighbors neighbor. Let h be the

average node degree of the network. As h << n, so the time complexity is (n*h
2
).

As our method is based on bounded length traversal, it traverses up to a path length

of l. So the time complexity is O(n*h
l
) and the space complexity is O(n*h).So Our

method is better than global approaches in terms of complexity.

 Condmat Disease-g

Page Rank 370 sec 530 sec

katz 430 sec 620 sec

Node neighbor 72 sec 230 sec

Proposed 260 sec 350 sec

This result shows that our algorithm takes less time as compared to the global

approaches. Node neighbor approach is taking less time as it focuses on only

immediate surroundings of the node and traverse only paths of length 2.

The below gure shows the bar plot of the time taken by di erent algorithms and

the proposed algorithms.

Figure 6.8: Bar Plot of Time takes by algorithms

Chapter 8

Conclusions and Future Works

36

37

8.1 Conclusions

Link Prediction is the method to predict the possible future interactions among

the nodes in the near future. Our algorithm uses both global and local

characteristics of the network to predict the links. Global approaches has the

time constraint as they traverse all paths of network to predict the links and local

approaches are less e cient as they consider only local features of the node.

Our approach is compared with all the approaches and it provides e cient and

accurate friend suggestions in a less interval of time

8.2 Future Research Opportunities

Link Prediction based on other features like photo, video tagging can be used

for better prediction. As many features as we consider simultaneously, the

prediction will be better because it gives information about many ways peoples

may by connected. We can consider the positive as well as negative links in a

network. If positive weight is for support, then negative weight should be for

opposing it. As network is always dynamic, so we can consider network

dynamics into consideration.

