
1

Enhancing the resolution of an image

using Super Resolution techniques

By
ARINDAM PRASAD

ARNAB CHOUDHURY

SOHAN DUTTA

ARKOV PAUL

UNDER THE GUIDANCE OF

Prof. PRAMIT GHOSH

PROJECT REPORT SUBMITTED IN FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

BACHELOR OF TECHNOLOGY IN COMPUTERSCIENCE AND

ENGINERING

RCC INSTITUTE OF INFORMATION TECHNOLOGY

Session 2014-2018

 DEPARTMENT OFCOMPUTERSCIENCEANDENGINEERING

RCC INSTITUTE OF INFORMATION TECHNOLOGY
Affiliated to Maulana Abul Kalam Azad University of Technology
CANAL SOUTH ROAD, BELIAGHATA, KOLKATA-700015

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
RCC INSTITUTE OF INFORMATION TECHNOLOGY

http://www.wbut.ac.in/

2

TO WHOM IT MAY CONCERN

I hereby recommend that the Project entitled 'Enhancing the resolution of an image using

Super Resolution Techniques’ prepared under my supervision by Arindam Prasad

(ClassRollNo.CSE2014/056), Arnab Choudhury (roll: CSE2014/055), Sohan Dutta (roll:

CSE2014/042), Arkov Paul (roll: CSE2014/046) of B.Tech (8ttttttth Semester), may be accepted in

fulfilment for the degree of Bachelor of Technology in Computer Science & Engineering

under Maulana Abul Kalam Azad University of Technology.

……………………………………………………………………………….
 Pramit Ghosh, Associate Professor

Project Supervisor

Department of Computer Science and Engineering
RCC Institute of Information Technology

Countersigned:

……………………………………………………………………………
Head
Department of Computer Sc.& Engg.
RCC Institute of information Technology

Kolkata-700015

http://www.wbut.ac.in/

3

DEPARTMEN TOF COMPUTER SCIENCE AND ENGINEERING

RCC INSTITUTE OF INFORMATION TECHNOLOGY

CERTIFICATE OF APPROVAL

The foregoing Project is hereby accepted as a credible study of an engineering

subject carried out and presented in a manner satisfactory to warrant its acceptance as

a prerequisite to the degree for which it has been submitted. It is understood that by

this approval the undersigned do not necessarily endorse or approve any statement

made opinion expressed or conclusion drawn therein, but approve the project only for

the purpose for which it is submitted.

FINAL EXAMINATION FOR 1.________

EVALUATION OF PROJECT

2._____________________

(Signature of Examiners)

4

DEPARTMENTOFCOMPUTER SCIENCEANDENGINEERING

RCCINSTITUTEOFINFORMATIONTECHNOLOGY

ACKNOWLEDGEMENT

We express our sincere gratitude to Mr.Pramit Ghosh, Associate Professor of Department of

Computer Science & Engineering, RCCIIT for providing his valuable time for us to take up

this topic as a Project.

ARINDAM PRASAD

ARNAB CHOUDHURY

SOHAN DUTTA

ARKOV PAUL

5

Table of Contents

Page No.

1. Introduction ……………………………………………………. 6

2. Review of Literature …………………………………………… 7

3. Objective of the Project………………………………………… 10

4. System Design…………………………………………………… 11

5. Methodology for implementation (Formulation/Algorithm)…… 12

6. Implementation Details…………………………………………. 16

7. Results/Sample output…………………………………………. 24

8.Applications……………………………………………………. 29

9.Challenges …………………………………………………… 29

10. Conclusion…………………………………………………… 30

Appendix-: Program Source code with adequate comments.
References

6

1.Introduction:

For better pictorial view for human interpretation or for machine perception for

making better decisions an image is required to be highly resolved. Resolution

plays an important role for interpretation and analysis of an image. If the

number of pixels is less than the image produces will be of low resolution (LR)

and offers very less information. As the pixel density increases the image

quality as well as the information offering by the image increases. Usually, the

sensor limits the quality of an image due to its physical characteristics like size

and density of detectors. The degradations in an image quality are caused at the

recording process such as optical distortion, motion blur caused by limited

shutter speed, noise and aliasing effects.

Optical Blur is a non-symmetric design of the lens and an aperture before or

behind the optic center of the lens lead to image distortions. Motions blur results

when the image being recorded changes during the recording of a single frame,

either due to rapid movement or long exposure. Noise in an image is an

undesirable by-product of image capture that adds spurious and extraneous

information. Aliasing effects refer to an effect which can create confusion

between different signals when sampled. Due to these, the final observed image

is blurred and noisy. One way of producing a high resolution (HR) image, is by

installing a high resolution sensor. But it is not very feasible to do so. It results

in increase of a cost as well as increase in power consumption. A simple

example of this is imaging system of satellite or a imaging system of medical,

where it is infeasible to use a high resolution sensor. So, to come over these,

post processing is required to develop a better resolved image that holds more

information. One of the promising approaches for this is signal processing

techniques to obtain HR image from multiple LR images. Nowadays such

approach is more active in research area, and is called Super Resolution (SR) or

Resolution Enhancement.

7

2.Review of Literature:

IMAGE SUPER RESOLUTION:

Super resolution is a process of achieving the best image quality through

the single low-resolution image or multiple low-resolution (LR) images of the

same scene. Super Resolution (SR) techniques combine the main feature of

image

restoration and image interpolation. The dimension of the image can be changed

via image interpolation whereas image restoration is used to recover a degraded

image without changing its dimension. Thus image super resolution (SR) is a

technique that restores the degraded image and also increases the size of the

image. In SR from multiple LR images, it is a construction of HR image from

several LR images, thereby increasing the high frequency components.

 The basic idea behind this is to combine non-repetitive information contained

by multiple LR images. While in SR from single LR image, resolution of the

image can be increased either by enhancing the edges of the objects present in

an image or by patch redundancy technique, where each LR patch is replaced by

its corresponding HR patch. The main benefit of SR approach is that, a HR

image can be obtained even with the existing LR imaging with lower cost and

less power consumption.

In SR reconstruction from multiple LR images, the basic assumption is that the

LR should have enough shifted in viewing the same scene. If LR has minor shift

then the HR reconstructed image will not contain any new information. Suppose

that four images are taken and one image out of four can be taken as reference

and other be shifted horizontally, vertically or diagonally to a scale of half

pixels. By taking that one image as reference, other three image pixels can be

interleaved and a higher resolved image can be generated.

1 1 1

1 1 1

1 2 1 2 1 2

3 4 3 4 3 4

1 2 1 2 1 2

3 4 3 4 3 4

1 2 1 2 1 2

3 4 3 4 3 4

2 2 2

2 2 2

 2 2 2

8

1 1 1

 Ideal Super Resolution setup

Out of these left side four images first one can be taken as reference and other

three images can be considered to be relative shifted to half a pixel in

horizontal, vertical, and diagonal directions. These three image pixels can then

be added to produce a high resolution image with increase in size of the right

side-single image.

Usually, a super resolution method consists of the following basic processing

steps: (1) Registration, (2) Interpolation and (3) DE blurring or noise removal.

Input LR

images

 Basic SR reconstruction stages

Image registration is the process of overlapping more than one images of the

same scene which has been taken from different angles by the sensors. In

3 3 3

3 3 3

3 3 3

4 4 4

4 4 4

4 4 4

HR images Motion

estimation or

registration

Interpolation

onto a high

resolution grid

Noise and blur

removal by

Restoration

9

registration two or more images are align geometrically to obtain the

information through image fusion or change detection.

Interpolation is a process of estimating the intermediate pixels between the pixel

values. When any image is converted from LR to HR, intermediate gaps are

introduced and these values have to be estimated and filled with interpolation

process.

As the process of interpolation introduces some artifacts the resultant image will

be blurred or noisy. Through different filters and techniques noise will be

removed and finally a super resolved image is generated.

10

3.Objective of the Project:

The objective of image super-resolution (SR) is to enhance the resolution of a

given low-resolution (LR) image, which has always been a continuous ongoing

process in image technology, through up-sampling, de-blurring, de-noising, etc.

In order to restore an image into a high-resolution (HR) image correctly, it is

necessary to infer high frequency components of a low-resolution image. In

some applications like, video surveillance, forensic investigation, face

recognition, medical diagnosis, satellite images and pattern recognition, it

becomes essential to extract the useful information from the images. During this

process, enlarging the image beyond a certain limit results in a blurred image

with no peculiar information. Hardware limitations of sensors is one of the main

cause behind this problem. Also, the main idea behind achieving the high-

resolution images is not to tamper the observable quality of the image. Many

super resolution techniques have been proposed to overcome the hardware

limitations in order to achieve the best results. There are lots of techniques exist

to increase the resolution of the input images. This paper provides comparative

studies among them.

11

4.System Design:

The GUI was designed using Matlab R2017b. Here multiple low resolution

image is first registered using Registration Estimator of matlab. Then the UI

forms a high resolution image removing noise from that image, and displays the

information of the image.

12

5.Methodology for implementation

(Formulation/Algorithm)

Image Registration

Registration is the determination of a geometrical transformation that aligns

points in one view of an object with corresponding points in another view of

that object or another object. We use the term “view” generically to include a

three dimensional image, a two-dimensional image, or the physical arrangement

of an object in space. Three-dimensional images are acquired by tomographic

modalities, such as computed tomography (CT), magnetic resonance (MR)

imaging, single-photon emission computed tomography (SPECT), and positron

emission tomography (PET). In each of these modalities, a contiguous set of

two-dimensional slices provides a three-dimensional array of image intensity

values. Typical two-dimensional images may be x-ray projections captured on

film or as a digital radiograph or projections of visible light captured as a

photograph or a video frame. In all cases, we are concerned primarily with

digital images stored as discrete arrays of intensity values. In medical

applications, which are our focus, the object in each view will be some

anatomical region of the body. (See Volume I of this handbook for a discussion

of medical imaging modalities.) The two views are typically acquired from the

same patient, in which case the problem is that of intrapatient registration, but

interpatient registration has application as well .

Overview:

Functions for aligning images by rotation and translation: image_registr_MI.m

MI2 - calculating Mutual information

joint_h - calculating Joint histogram

Mutual information is calculated using joint histogram calculation between two

images.

For each angle of rotation all translation parameters are checked.

NOTE - the images must have correct relative sizes with respect to each other

(no resizing is incorporated in this registration)

NOTE: image1 should be smaller than image2

Function allows to crop part of the image for registration to save computational

time using IMCROP function.

13

For more help type:

help image_registr_MI.m

For users without IP toolbox download file im_reg_mi.zip without

% cropping option and with different rotation function

Nearest Neighbor Interpolation

For nearest neighbor interpolation, the block uses the value of nearby translated

pixel values for the output pixel values.

For example, suppose this matrix,

147258369

represents your input image. You want to translate this image 1.7 pixels in the

positive horizontal direction using nearest neighbor interpolation. The Translate

block's nearest neighbor interpolation algorithm is illustrated by the following

steps:

1. Zero pad the input matrix and translate it by 1.7 pixels to the right.

2. Create the output matrix by replacing each input pixel value with the

translated value nearest to it. The result is the following matrix:

000000147258369

Bilinear Interpolation

For bilinear interpolation, the block uses the weighted average of two translated

pixel values for each output pixel value.

For example, suppose this matrix,

14

147258369

represents your input image. You want to translate this image 0.5 pixel in the

positive horizontal direction using bilinear interpolation. The Translate block's

bilinear interpolation algorithm is illustrated by the following steps:

1. Zero pad the input matrix and translate it by 0.5 pixel to the right.

2. Create the output matrix by replacing each input pixel value with the

weighted average of the translated values on either side. The result is the

following matrix where the output matrix has one more column than the

input matrix:

0.523.51.54.57.52.55.58.51.534.5

Noise Removal

Digital images are prone to various types of noise. Noise is the result of errors

in the image acquisition process that result in pixel values that do not reflect the

true intensities of the real scene. There are several ways that noise can be

introduced into an image, depending on how the image is created. For example:

 If the image is scanned from a photograph made on film, the film grain is

a source of noise. Noise can also be the result of damage to the film, or be

introduced by the scanner itself.

 If the image is acquired directly in a digital format, the mechanism for

gathering the data (such as a CCD detector) can introduce noise.

 Electronic transmission of image data can introduce noise.

15

To simulate the effects of some of the problems listed above, the toolbox provides

the imnoise function, which you can use to add various types of noise to an

image. The examples in this section use this function.

Remove Noise by Linear Filtering

You can use linear filtering to remove certain types of noise. Certain filters,

such as averaging or Gaussian filters, are appropriate for this purpose. For

example, an averaging filter is useful for removing grain noise from a

photograph. Because each pixel gets set to the average of the pixels in its

neighborhood, local variations caused by grain are reduced.

Remove Noise Using an Averaging Filter and a Median Filter

We can remove salt and pepper noise from an image using an averaging filter

and a median filter to allow comparison of the results. These two types of

filtering both set the value of the output pixel to the average of the pixel values

in the neighborhood around the corresponding input pixel. However, with

median filtering, the value of an output pixel is determined by the median of the

neighborhood pixels, rather than the mean. The median is much less sensitive

than the mean to extreme values (called outliers). Median filtering is therefore

better able to remove these outliers without reducing the sharpness of the image.

2-D median filtering:

Syntax:

B = medfilt2(A)

B = medfilt2(A,[m n])

B = medfilt2(___,padopt)

gpuarrayB = medfilt2(gpuarrayA)gpuarrayB = medfilt2(gpuarrayA,[m n])

https://in.mathworks.com/help/images/ref/imnoise.html

16

6. Implementation Details:

The above project was implemented using Matlab.

Source Code:

GUI using Matlab:

function varargout = testing(varargin)
% TESTING MATLAB code for testing.fig
% TESTING, by itself, creates a new TESTING or raises the existing
% singleton*.
%
% H = TESTING returns the handle to a new TESTING or the handle to
% the existing singleton*.
%
% TESTING('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in TESTING.M with the given input arguments.
%
% TESTING('Property','Value',...) creates a new TESTING or raises the
% existing singleton*. Starting from the left, property value pairs

are
% applied to the GUI before testing_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property

application
% stop. All inputs are passed to testing_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help testing

% Last Modified by GUIDE v2.5 15-May-2018 18:33:00

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @testing_OpeningFcn, ...
 'gui_OutputFcn', @testing_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end

17

% End initialization code - DO NOT EDIT

% --- Executes just before testing is made visible.
function testing_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to testing (see VARARGIN)

% Choose default command line output for testing
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes testing wait for user response (see UIRESUME)
% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.
function varargout = testing_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA

% --- Executes on button press in near.
function near_Callback(hObject, eventdata, handles)
% hObject handle to near (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
[filename pathname] = uigetfile({'*.bmp';'*.jpg'},'File Selector');
i=strcat(pathname,filename);
im=imread(i);
axes(handles.axes1);
imshow(im);
fac=str2num(get(handles.edit8,'string'));
out=nearest_neighbour_zoom(im,fac);
fileinfo=imfinfo(i);
sizew=fileinfo.Width(1,1);
sizeh=fileinfo.Height(1,1);
f_size=(fileinfo.FileSize(1,1))/1024;
axes(handles.axes2);
imshow(out);
set(handles.edit1,'string',sizew);
set(handles.edit2,'string',sizeh);

18

set(handles.edit3,'string',f_size);
imwrite(out,'near_zoom.jpg');
set(handles.edit4,'string','The zoomed file is saved as near_zoom ');
final=('D:\matlab projects\interpolation\near_zoom.jpg');
fileinfo=imfinfo(final);
sizew=fileinfo.Width(1,1);
sizeh=fileinfo.Height(1,1);
f_size=(fileinfo.FileSize(1,1))/1024;
set(handles.edit5,'string',sizew);
set(handles.edit6,'string',sizeh);
set(handles.edit7,'string',f_size);

% --- Executes on button press in pushbutton3.
function pushbutton3_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
[filename pathname] = uigetfile({'*.bmp';'*.jpg'},'File Selector');
i=strcat(pathname,filename);
im=imread(i);
axes(handles.axes1);
imshow(im);
fac=str2num(get(handles.edit8,'string'));
out=bilinear_zoom(im,fac);
fileinfo=imfinfo(i);
sizew=fileinfo.Width(1,1);
sizeh=fileinfo.Height(1,1);
f_size=(fileinfo.FileSize(1,1))/1024;
axes(handles.axes2);
imshow(out);
set(handles.edit1,'string',sizew);
set(handles.edit2,'string',sizeh);
set(handles.edit3,'string',f_size);
imwrite(out,'bilinear_zoom.jpg');
set(handles.edit4,'string','The zoomed file is saved as bilinear_zoom ');
final=('D:\matlab projects\interpolation\bilinear_zoom.jpg');
fileinfo=imfinfo(final);
sizew=fileinfo.Width(1,1);
sizeh=fileinfo.Height(1,1);
f_size=(fileinfo.FileSize(1,1))/1024;
set(handles.edit5,'string',sizew);
set(handles.edit6,'string',sizeh);
set(handles.edit7,'string',f_size);

% --- Executes during object creation, after setting all properties.
function pushbutton1_CreateFcn(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

function edit1_Callback(hObject, eventdata, handles)
% hObject handle to edit1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

19

% Hints: get(hObject,'String') returns contents of edit1 as text
% str2double(get(hObject,'String')) returns contents of edit1 as a

double

% --- Executes during object creation, after setting all properties.
function edit1_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function edit2_Callback(hObject, eventdata, handles)
% hObject handle to edit2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit2 as text
% str2double(get(hObject,'String')) returns contents of edit2 as a

double

% --- Executes during object creation, after setting all properties.
function edit2_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function edit3_Callback(hObject, eventdata, handles)
% hObject handle to edit3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit3 as text
% str2double(get(hObject,'String')) returns contents of edit3 as a

double

% --- Executes during object creation, after setting all properties.
function edit3_CreateFcn(hObject, eventdata, handles)

20

% hObject handle to edit3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function edit4_Callback(hObject, eventdata, handles)
% hObject handle to edit4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit4 as text
% str2double(get(hObject,'String')) returns contents of edit4 as a

double

% --- Executes during object creation, after setting all properties.
function edit4_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function edit5_Callback(hObject, eventdata, handles)
% hObject handle to edit5 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit5 as text
% str2double(get(hObject,'String')) returns contents of edit5 as a

double

% --- Executes during object creation, after setting all properties.
function edit5_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit5 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.

21

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function edit6_Callback(hObject, eventdata, handles)
% hObject handle to edit6 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit6 as text
% str2double(get(hObject,'String')) returns contents of edit6 as a

double

% --- Executes during object creation, after setting all properties.
function edit6_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit6 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function edit7_Callback(hObject, eventdata, handles)
% hObject handle to edit7 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit7 as text
% str2double(get(hObject,'String')) returns contents of edit7 as a

double

% --- Executes during object creation, after setting all properties.
function edit7_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit7 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

22

function edit8_Callback(hObject, eventdata, handles)
% hObject handle to edit8 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit8 as text
% str2double(get(hObject,'String')) returns contents of edit8 as a

double

% --- Executes during object creation, after setting all properties.
function edit8_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit8 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

bilinear interpolation using matlab:

% bilenear_zoom.m
% Zooming function using bilenear method
function Img_zoomed = bilenear_zoom(Img, factor)

[h w c] = size(Img);
r = factor;
hn = r*(h-1)+1; wn = r*(w-1)+1;
Img_zoomed = zeros(hn, wn, c);

% Padding the scaled image with 0 pixel value
for i= 1:h
 for j= 1:w
 Img_zoomed(r*(i-1)+1, r*(j-1)+1, :) = Img(i, j, :);
 end
end

% Interpolation
for k= 1:c
for i= 0:r:hn-r
for j= 0:r:wn-r
A = Img_zoomed(i+1, j+1, k);
B = Img_zoomed(i+1, j+r+1, k);
C = Img_zoomed(i+r+1, j+1, k);
D = Img_zoomed(i+r+1, j+r+1, k);

a0 = A;
 a1 = double((B-A)/r);
 a2 = double((C-A)/r);
 a3 = double((D-C-B+A)/(r*r));

 for l= 0:r

23

 for m= 0:r
 Img_zoomed(i+l+1, j+m+1, k) = a0 + a1*m + a2*l + a3*m*l;
 end
 end
 end
 end
end

Img_zoomed = uint8(Img_zoomed);

end

nearest neighbour interpolation using matlab:

% Zooming function using nearest neighbour method

function Img_zoomed = nearest_neighbour_zoom(Img, factor)

[h w c] = size(Img);
wn = w*factor;
hn = h*factor;
Img_zoomed = uint8(zeros(hn, wn));

for i= 0:hn-1
 for j= 0:wn-1
 x = floor(j/factor);
 y = floor(i/factor);
 for k= 1:c
 Img_zoomed(i+1, j+1, k) = Img(y+1, x+1, k);
 end
 end
end

end

Noise Removal using Matlab:

i=imread('bi_zoomed.jpg');
s=imsharpen(i);
m=medfilt2(s);
imshow(m);
imwrite(m,'final.jpg');

24

7. Results/Sample output:

2 Low resolution images:

25

Image registration using matlab registration estimator:

After registration:

26

After nearest neighbour interpolation:

27

After bilinear interpolation:

28

After noise removal:

29

8.APPLICATIONS:

Several practical areas and applications of SR as follows:

1. Biometrics – Fingerprint recognition, Face recognition, Character

recognition, DNA analysis.

2.Medical Science – MRI, CT, X-Ray, Ultrasound

 3. Satellite Imaging – Planetary information, Weather forecasting, Target

detection, Traffic detection.

 4. Surveillance Video – Zooming region of interest (ROI). E.g. license

plate recognition of vehicle, target recognition

5. Entertainment – HDTV, Photography.

6. Commercial – Barcode reading.

7. Military – Tracking and Detecting

9.Challenges for super resolution:

In practical building SR image, there are several challenges and issues regarding

that. Some of them are as follows:

(i). Image Registration:

In an image, image registration is a well-known problem known by the name of

ill-posed image. Image registration becomes more and more difficult when

observed LR image is having very high aliasing effects. The registration error

increases with decrease in the resolution of observed image. The degradation

caused by these registration errors affects the quality of an image resolution

more than that of interpolation

(ii). Computational Efficiency:

30

Real time application is always requiring good efficiency. As there are large

numbers of unknowns in reconstructing SR images, matrix manipulation

increases [10].

10.Conclusion:

We have explained the concept of SR technology in this article by providing an

overview of existing SR algorithms and advanced issues currently under

investigation. We specified interpolation based, reconstruction based and

learning based approaches to achieve the goal. We also include applications and

comparison of different SR approaches. SR image reconstruction is one of the

most spotlighted research areas, because it can overcome the inherent resolution

limitation of the imaging system and improve the performance of most digital

image processing applications.

